US008903759B2 ## (12) United States Patent King et al. #### (54) DETERMINING ACTIONS INVOLVING CAPTURED INFORMATION AND ELECTRONIC CONTENT ASSOCIATED WITH RENDERED DOCUMENTS (75) Inventors: **Martin T. King**, Vashon Island, WA (US); **Dale L. Grover**, Ann Arbor, MI (US); Clifford A. Kushler, Lynnwood, WA (US); James Q. Stafford-Fraser, Cambridge (GB) (73) Assignee: Google Inc., Mountain View, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 12/887,473 (22) Filed: Sep. 21, 2010 #### (65) **Prior Publication Data** US 2011/0072395 A1 Mar. 24, 2011 #### Related U.S. Application Data - (63) Continuation of application No. 11/972,562, filed on Jan. 10, 2008, now abandoned, which is a continuation of application No. 11/097,093, filed on Apr. 1, 2005, now abandoned, which is a continuation-in-part of application No. 11/004,637, filed on Dec. 3, 2004, now Pat. No. 7,707,039. - (51) Int. Cl. G06F 7/00 (2006.01) G06F 17/00 (2006.01) G06F 17/24 (2006.01) G06F 3/048 (2013.01) - (52) U.S. Cl. G06F 17/30 CPC *G06F 17/30011* (2013.01); *G06F 17/243* (2013.01); *G06F 17/241* (2013.01) (2006.01) Field of Classification Search (10) **Patent No.:** (45) **Date of Patent:** None (58) See application file for complete search history. US 8,903,759 B2 Dec. 2, 2014 #### (56) References Cited #### U.S. PATENT DOCUMENTS | 3,899,687 A | 8/1975 | Jones | | |-------------|-------------|----------|--| | 3,917,317 A | 11/1975 | Ryan | | | 4,065,778 A | 12/1977 | | | | 4,135,791 A | 1/1979 | Govignon | | | | (Continued) | | | #### FOREIGN PATENT DOCUMENTS | EP | 0697793 | 2/1996 | |----|----------|-------------| | EP | 0887753 | 12/1998 | | | (Co | ntinued) | | | OTHER PU | JBLICATIONS | European Search Report for EP Application No. 05731509 dated Apr. 23, 2009 European Search Report for EP Application No. 05732913 dated Mar. 31, 2009. European Search Report for EP Application No. 05733191 dated Apr. 23, 2009. #### (Continued) Primary Examiner — Rehana Perveen Assistant Examiner — Raheem Hoffler (74) Attorney, Agent, or Firm — Fish & Richardson P.C. #### (57) ABSTRACT Information is captured from a rendered document with a handheld document data capture device. Electronic information associated with the rendered document is applied to determine the system's actions and/or behaviors in response to the data capture. In some embodiments, the electronic information is markup data or an action map associated with the rendered document. In some embodiments, an electronic counterpart corresponding to the rendered document is located, and information associated with the electronic counterpart is applied to determine actions and/or behaviors available to a user of the handheld document data capture device. #### 37 Claims, 8 Drawing Sheets # US 8,903,759 B2 Page 2 | (56) Referen | nces Cited | 6,229,137 B1 | 5/2001 | | |---------------------|-----------------------------------|------------------------------|---------|-----------------------------------| | II C DATENIT | DOCUMENTS | 6,265,844 B1
6,292,274 B1 | 9/2001 | Wakefield
Bohn | | U.S. PATENT | DOCUMENTS | 6,310,988 B1 | | Flores et al. | | 4,358,824 A 11/1982 | Glickman et al. | 6,314,406 B1 | 11/2001 | O'Hagan et al. | | | Froessl | 6,330,976 B1 | | Dymetman et al. | | | Cannistra et al. | 6,341,290 B1 | | Lombardo et al. | | | Schmidt et al. | 6,342,901 B1
6,345,104 B1 | | Adler et al.
Rhoads | | | Rudak
Bobba | 6,349,308 B1 | | Whang et al. | | | Yamaguchi et al. | 6,360,949 B1 | 3/2002 | Shepard et al. | | | Lee et al. | 6,360,951 B1 | | Swinehart | | | Gaborski et al. | 6,409,401 B1
6,427,032 B1 | | Petteruti et al.
Irons et al. | | | Ueno et al. | 6,429,899 B1 | | Nio et al. | | | Kawaguchi et al.
Brackmann | 6,459,823 B2 | | Altunbasak et al. | | | Ueda et al. | 6,466,336 B1 | | Sturgeon et al. | | 5,159,668 A 10/1992 | Kaasila | 6,490,553 B2 | | Van Thong et al. | | | Bloomberg | 6,493,707 B1
6,520,407 B1 | | Dey et al.
Nieswand et al. | | | Deaton et al.
Johnson | 6,537,324 B1 | | Tabata et al. | | | Ueda et al. | 6,597,812 B1 | | Fallon et al. | | | Blevins | 6,611,598 B1 | | Hayosh | | | Kumar et al. | 6,616,038 B1 | | Olschafskie et al. | | | Daniele | 6,616,047 B2
6,640,145 B2 | 9/2003 | Hoffberg et al. | | | Hull et al.
Kupiec | 6,641,037 B2 | | Williams | | | Murai et al. | 6,650,442 B1 | 11/2003 | | | | Johnson et al. | 6,675,356 B1 | | Adler et al. | | | Shepard et al. | 6,678,075 B1 | | Tsai et al. | | - ,, | Arackellian | 6,678,687 B2
6,691,107 B1 | | Watanabe et al. Dockter et al. | | | Grajski et al.
Coleman et al. | 6,714,677 B1 | | Stearns et al. | | 5,624,265 A 4/1997 | Redford et al. | 6,738,519 B1 | | Nishiwaki | | | Nicholson et al. | 6,741,871 B1 | | Silverbrook et al. | | | Brueckheimer | 6,745,937 B2
6,748,306 B2 | | Walsh et al. | | | Tanaka et al. | 6,757,783 B2 | 6/2004 | Lipowicz
Koh | | | Sotomayor
Dedrick | 6,771,283 B2 | 8/2004 | | | | Withgott et al. | 6,775,422 B1* | | Altman 382/305 | | | Roustaei et al. | 6,783,071 B2 | | Levine et al. | | | Nitta et al. | 6,785,421 B1
6,801,658 B2 | | Gindele et al.
Morita et al. | | | Clark
Segawa et al. | 6,801,907 B1 | 10/2004 | | | 5,818,965 A 10/1998 | | 6,812,961 B1 | 11/2004 | Parulski et al. | | 5,832,528 A 11/1998 | Kwatinetz et al. | 6,820,237 B1 | | Abu-Hakima et al. | | 5,889,896 A 3/1999 | | 6,823,075 B2 | 11/2004 | | | | Peltonen et al. | 6,845,913 B2
6,850,252 B1 | | Madding et al.
Hoffberg | | | Jain et al.
Williams et al. | 6,862,046 B2 | 3/2005 | | | | Martino et al. | 6,877,001 B2 | | Wolf et al. | | 5,937,422 A 8/1999 | Nelson et al. | 6,880,124 B1 | 4/2005 | | | | Kojima et al. | 6,917,722 B1
6,917,724 B2 | | Bloomfield et al.
Seder et al. | | | Mitchell et al.
Shimada et al. | 6,922,725 B2 | | Lamming et al. | | | Yokoyama et al. | 6,925,182 B1 | | Epstein | | | Cotugno | 6,952,281 B1 | | Irons et al. | | 6,002,491 A 12/1999 | Li et al. | 6,957,384 B2 | | Jeffery et al. | | 6,009,420 A 12/1999 | Fagg, III et al. | 6,978,297 B1
6,985,169 B1 | 1/2005 | Deng et al. | | | Bezos et al.
Bohn | 6,990,548 B1 | 1/2006 | | | | Sizer et al. | 6,991,158 B2 | 1/2006 | Munte | | 6,044,378 A 3/2000 | Gladney | 6,992,655 B2 | | Ericson et al. | | | Swift et al. | 7,001,681 B2
7.006.881 B1 | 2/2006 | Wood
Hoffberg | | | Guzik et al. | 7,000,881 B1
7,010,616 B2 | | Carlson et al. | | | Kielland
Ackner | 7,020,663 B2 | | Hay et al. | | | Embry et al. | 7,023,536 B2 | | Zhang et al. | | 6,095,418 A 8/2000 | Swartz et al. | 7,038,846 B2 | | Mandella | | | Lazarus et al. | 7,047,491 B2 | | Schubert et al. | | | Hopper
Samuet al | 7,058,223 B2
7,062,437 B2 | 6/2006 | Cox
Kovales et al. | | | Sanu et al.
Inaba et al. | 7,062,437 B2
7,069,272 B2 | | Snyder | | | Suda et al. | 7,085,755 B2 | | Bluhm et al. | | | Williams et al. | 7,088,440 B2 | | Buermann et al. | | 6,178,263 B1 1/2001 | Fan et al. | 7,089,330 B1 | 8/2006 | | | | Wolff et al. | 7,093,759 B2 | 8/2006 | | | 6,212,299 B1 4/2001 | | 7,110,100 B2 | | Buermann et al. | | 6,226,631 B1 5/2001 | Evans | 7,111,787 B2 | 9/2006 | Ehrhart | # US 8,903,759 B2 Page 3 | 7.634.68 12.2009 Sephan Foliage Foli | (56) | | Referen | ces Cited | 7,634,407 | | | Chelba et al. | |--|----------|----------------|---------|-------------------|--------------|----|---------|-----------------------| | 7,113,270 B2 9,2006 Bacmann at al. 7,600,431 B2 2,2010 [Air-Printing et 4,2010 [Air-Printing et al. 7,700,431 7, | | HC | DATENIT | DOCHMENTS | | | | | | 7,11,1370 12 2,9006 Bucmann et al. 7,666,741 82 2,2010 Mile-Frayling et al. 7,11,1374 82 1,7006 MacLean et al. 7,672,431 82 2,2010 Mile et al. 7,11,1376 82 1,17006 Mile et al. 7,672,431 82 2,2010 Mile et al. 7,11,1376 82 1,17006 Mile et al. 7,682,713 82 2,2010 Mile et al. 7,11,1376 82 1,17006 Mile et al. 7,682,713
82 2,2010 Mile et al. 7,11,1376 82 1,17006 Mile et al. 7,682,713 82 2,2010 7,702,703 | | U.S. | FALENT | DOCUMENTS | | | | | | 7.113764 B2 10/2006 Hill et al. 7,889,743 B2 2,2010 Insurance et al. 7,13166 B2 10/2006 MucLea et al. 7,689,673 B2 3,2010 Insurance et al. 7,1316,768 B2 11/2006 Filter et al. 7,889,871 B2 3,2010 Insurance et al. 7,1314,745 B2 11/2007 Birt et al. 7,689,673 B2 3,2010 Insure et al. 7,1314,745 B2 11/2007 Birt et al. 7,689,673 B2 3,2010 Viscent et al. 7,105,758 B2 4,2010 7,205,758 4,20 | 7,113,27 | 70 B2 | 9/2006 | Buermann et al. | 7,660,813 | B2 | 2/2010 | Milic-Frayling et al. | | 1,133,862 12 11,2006 Hubert et al. 7,689,171 82 2,2010 Pasad et al. 7,131,945 12 11,2006 Plue et al. 7,689,712 82 3,2010 Informer et al. 7,689,713 83 4,2010 Tolerent et al. 7,706,731 83 4,2010 Tolerent et al. 7,706,731 83 4,2010 Tolerent et al. 7,706,731 83 4,2010 Tolerent et al. 7,706,733 7,736,161 83 6,2010 Tolerent et al. 7,736,161 83 6,2010 Tolerent et al. 7,736,161 83 6,2010 Tolerent et al. 7,736,161 83 2,2010 7,24,240 83 7,2007 Tolerent et al. 7,337,367 83 2,2010 Tolerent et al. 7,24,240 83 7,2007 | | | | | | | | | | 7,137,077 12 11/2006 Iverna et al. 7,689,525 22 22/101 Loce et al. 7,139,445 23/101 Vincent et al. 7,689,525 23/2010 Talmor et al. 7,689,525 23/2010 Talmor et al. 7,689,524 23/2010 Vincent et al. 7,769,631 7,769,611 7,769,761 Vincen | 7,131,06 | 51 B2 | | | | | | | | 7,130,445 102 11,2006 Pilic et al. 7,689,382 B2 32,010 Talmor et al. 7,161,5628 B1 12,0007 Moore et al. 7,687,578 B2 42,010 Sarcen et al. 7,161,5628 B1 12,0007 Moore et al. 7,002,674 B2 42,010 Sarcen et al. 7,161,568 B2 12,0007 Baunt et al. 7,702,674 B2 42,010 Sarcen et al. 7,161,568 B2 12,0007 Sarcen et al. 7,702,674 B2 42,010 Sarcen et al. 7,161,568 B2 22,000 Davis et al. 7,702,674 B2 42,010 Sarcen et al. 7,161,568 B2 22,000 Sarcen et al. 7,702,674 B2 42,010 Sarcen et al. 7,161,568 B2 22,010 Sarcen et al. 7,702,674 B2 42,010 Sarcen et al. 7,102,678 B2 52,010 Sarcen et al. 7,702,671 B2 7,2007 Sarcen et al. 7,702,671 B2 7,2007 Sarcen et al. 7,702,671 B2 7,2007 Sarcen et al. 7,702,671 B3 52,010 Sarcen et al. 7,702,671 B3 | | | | | | | | | | 7,161,604 B3 1,2007 Bucrman et al. 7,607,758 B2 4/2010 Vincent et al. 7,608,768 B2 1,2007 Brann et al. 7,608,768 B2 4/2010 Sureen et al. 7,608,768 B2 4/2010 Sureen et al. 7,608,768 B2 4/2010 King et al. 7,708,611 7,709,758 B2 5/2010 Harrison, Ir. 7,709,758 B2 5/2010 Harrison, Ir. 7,709,758 B2 5/2010 Harrison, Ir. 7,709,759 B2 6/2010 King et al. 7,709,759 B2 6/2010 King et al. 7,709,759 B2 6/2010 King et al. 7,709,750 B2 6/2010 King et al. 7,709,6116 B2 9/2010 Salsman 7,709,709 B2 6/2007 Salsman et al. 7,709,709,709 B2 6/2007 Salsman et al. 7,709,709 6/2 | | | | | | | | | | 7,176,758 B2 12007 Braun et al. 7,702,629 B2 4/2010 King et al. 7,174,342 B2 2,2007 Baxter et al. 7,707,309 B2 4/2010 King et al. 7,176,343 B2 2,2007 Baxter et al. 7,707,309 B2 5,2010 Harrison, Jr. 7,185,275 B2 2,2007 Baxter et al. 7,707,309 B2 5,2010 Harrison, Jr. 7,190,450 B2 3,2007 Sturgen et al. 7,707,309 B2 5,2010 Mandella et al. 7,707,451 B2 7,2017 B2 3,2007 Sturgen et al. 7,704,451 B2 7,2010 Cuntinghum (1,776,451 B2 7,701,451 7,701,4 | | | | | | | | | | 7,143,332 19.2 2,2007 Baxter et al. 7,706,611 B2 4,2010 King et al. 7,181,761 B2 2,2007 Davis et al. 7,707,939 B2 4,2010 King et al. 7,183,675 B2 2,2007 Shawa 7,729,151 B2 5,2010 Harrison H. 7,183,677 B2 3,2007 Shawa 7,729,151 B2 5,2010 Mandella et al. 7,207,938 B2 2,2010 Shawa 7,729,151 B2 5,2010 King et al. 7,207,938 B2 2,2010 Cohima et al. 7,207,939 B2 8,2010 Cohima et al. 7,207,930 B2 8,2010 Cohima et al. 7,207,931 B2 8,2010 Cohima et al. 7,207,941 2,2007 Silverbrook et al. 7,207,941 B2 1,2007 Cohima et al. 7,207,941 B2 2,2010 Cohima et al. 7,207,941 B2 2,2010 Cohima et al. 7,207,941 B2 2,2010 Cohima et al. 7,207,941 B2 2,2011 King 7, | | | | | | | | | | 7,181,761 B2 | | | | | | | | | | 7,185,275 B2 2,2007 Roberts et al. 7,40,398 B2 5,2010 Harrison, if al. 7,185,307 B2 3,2007 Ohswa 7,225,151 B2 6,2010 Mandella et al. 7,185,307 B2 3,2007 Nowell et al. 7,274,345 B2 2,2010 Gens et al. 7,275,346 8,275,275 B2 2,2011 Gens et al. 8,275,275 B2 2,2010 Gen | | | | | | | 4/2010 | King et al. | | 7,190,480 B2 3,2007 Newell et al. 7,744,953 B2 62010 Cunningham (7,197,16) B2 3,2007 Newell et al. 7,761,451 B2 7,2001 Cunningham (7,197,16) B2 42,007 Carl 7,783,617 B2 8,2010 Cornes et al. 7,783,617 B2 8,2010 Cunningham (7,197,16) B2 42,007 Carl 7,783,617 B2 8,2010 Forstall et al. 7,203,158 B2 42,007 Carl 7,783,618 B2 42,007 Carl 7,783,618 B2 42,007 Carl 1,783,618 B2 42,007 Carl 1,783,618 B2 42,007 Carl 1,783,618 B2 42,007 Carl 1,783,618 B2 52,007 Bachman et al. 7,784,618 B2 52,007 Tanika et al. 7,804,618 B2 1,000 Salsman 7,904,919 B1 5,001 Back et al. 7,904,919 B2 6,001 Back et al. 7,904,919 B2 6,000 Back et al. 8,082,238 B2 1,000 Salsman et al. 8,1802,818 Sa | | | | | | | | | | 7,197,716 182 3,2007 Newell et al. 7,761,451 B2 7,2010 Cunings than 7,201,518 B2 4,2007 Carl 7,783,617 B2 8,2010 Euer al. 7,203,384 B2 4,2007 Carl 7,783,617 B2 8,2010 Euer al. 7,203,384 B2 4,2007 Carl 7,783,617 B2 8,2010 Euer al. 7,204,428 B2 8,2010 Forstall et al. 8,2017,204,428 B2 8,2010 Forstall et al. 7,204,428 B2 5,2007 Tanska et al. 7,204,428 B2 8,2010 Forstall et al. 7,204,428 B2 5,2007 Tanska et al. 7,818,215 B2 10,2010 King et al. 7,224,408 B2 5,2007 Tanska et al. 7,818,215 B2 10,2010 King et al. 7,234,648 B2 8,2010 Forstall et al. 7,234,648 B2 6,2007 Silverbrook et al. 7,818,215 B2 10,2010 King et al. 7,234,649 B2 6,2010 Forstall et al. 7,234,649 B2 7,2007 Forstains et al. 7,818,215 B2 10,2010 King et al. 7,234,649 B2 7,2007 Forstains et al. 7,244,403 B2 5,2011 King et al. 7,244,403 B2 8,2007 Forstains et al. 7,244,403 B2 5,2011 King et al. 7,244,403 B2 8,2007 Forstains et al. 7,244,403 B2 5,2011 King et al. 7,244,403 B2 8,2007 Forstains et al. 8,282,288 B2 1,2001 King et al. 7,244,403 B2 5,2011 8,282,288 B2 1,2007 Mandella 7,961,909 B2 6,2011 King et al. 8,282,288 B2 1,2007 Mandella 7,961,909 B2 6,2011 King et al. 8,244,228 B2 10,2007 Mandella 7,961,909 B2 5,2011 King et al. 8,244,228 B2 10,2007 Mandella 7,961,909 B2 5,2011 King et al. 8,244,228 B2 10,2007 Minist et al. 8,141,927 B2 2,2012 King et al. 8,244,228 B2 10,2007 Minist et al. 8,141,927 B2 2,2012 King et al. 8,244,254 B2 2,2008 Meier et al. 2002,200,2014 I Al 12,2002 King et al. 2002,2014 1 | | | | | | | | | | 7.203,158 B2 4.2007 Oshima et al. 7,779,002 B1 8,2010 Gomes et al. 7,203,158 B2 4.2007 Carl 7,783,167 B2 8.2010 Florstall et al. 7,203,158 B2 4.2007 Carl 7,788,248 B2 5,2007 Florstall et al. 7,788,248 B2 5,2007 Florstall et al. 7,203,161 B2 9,2010 Slasman et al. 7,205,161 B2 9,2010 Slasman et al. 7,205,173 B2 6,2007 Slavebrook et al. 7,812,800 B2 10,2010 King et al. 7,225,797 B2 7,2007 Slavebrook et al. 7,812,1912 B2 11,2010 King et al. 7,205,173 B2 7,2007 Slavebrook et al. 7,872,606 B2 12,011 Darriel et al. 7,872,607 B2 2,001 Currans et al. 7,872,607 B2 2,001 Currans et al. 7,872,607 B2 2,001 Currans et al. 7,944,191 B1 5,201 Benson R2,205,203 B2 8,2007 Slavely et al. 7,944,191 B1 5,201 Benson R2,205,203 B2 8,2007 Slavely et al. 7,944,191 B1 5,201 Benson R2,205,203 B2 8,2007 Slavely et al. 8,082,238 B2 12,201 Mandella R2,205,203 B2 10,2007 Korsis et al. 8,181,207 B2 12,2007 Morris et al. 8,181,207 B2 12,2007 Morris et al. 8,146,156 B2 3,2012 King et al. 7,228,103 B2 11,2007 Ward et al. 8,146,156 B2 3,2012 King et al. 7,228,103 B2 11,2007 Ward et al. 8,146,156 B2 3,2012 King et al. 7,228,103 B2 11,2007 Ward et al. 8,102,203 B2 12,2001 Morris et al. 8,146,156 B2 3,2012 King et al. 7,228,103 B2 12,2007 Ward et al. 8,102,203 B2 12,2007 Ward et al. 8,102,203 B2 12,200 Morris e | | | | | | | | | | 7,203,348 B2 4/2007 Carl 7,788,547 B2 8/2010 Lot at al. 7,216,121 B2 5/2000 Bachman et al. 7,788,548 B2 8/2010 Forstall et al. 7,216,126 B2 9/2010 Salsman et al. 7,216,126 B2 10,2010 King et al. 7,224,426 B2 6/2007 Silverbrook et al. 7,216,126 B2 10,2010 King et al. 7,224,426 B2 7,2007 Silverbrook et al. 7,231,912 B2 11,2011 Darrell et al. 7,247,426 B2 7,2007 Silverbrook et al. 7,231,912 B2 11,2011 Darrell et al. 7,247,426 B2 7,2007 Silverbrook et al. 7,247,426 B2 7,2007 Silverbrook et al. 7,247,426 B2 7,200,334 B2 8,2007 Gandhi et al. 7,249,433 B2 5/2011 Benson 7,226,738 B2 8,2007 Stavely et al. 7,249,191 B1 5/2011 Ramkumar et al. 7,249,193 B2 10,2007 Liu et al. 8,262,258 B2 10,2007 Morris 8,262,268 | | | | | | | | | | 7,216,224 B2 5,2007 Tanghan et al. 7,796,116 B2 9,2010 Salsman et al. 7,224,249 B2 5,2007 Tangha et al. 7,818,215 B2 10,2010 King et al. 7,225,979 B2 6,2007 Silverbrook et al. 7,818,215 B2 10,2010 King et al. 7,234,049 B2 6,2007 Silverbrook et al. 7,831,912 B2 11,2010 King et al. 7,234,049 B2 7,2007 Currans et al. 7,831,912 B2 11,2010 King et al. 7,234,349 B2 7,2007 Currans et al. 7,831,912 B2 11,2010 King et al. 7,226,336 B2 8,2007 Toshima 7,894,670 B2 2,2011 Enson 7,260,736 B2 8,2007 Gandhi et al. 7,941,433 B2 2,2011 Enson 7,260,736 B2 8,2007 Mandella 1,794,1433 B2 2,2011 Enson 7,260,936 B2 9,2007 Mandella 7,961,909 B2 6,2011 Mandella et al. 7,241,433 B2 2,2011 Enson 7,284,959 B2 10,2007 Kashi et al. 8,111,277 B2 2,2012 Vincent 2,2010 Winchest et al. 2002,001,55411 A1 1,2000 Watanabe 1,234,345,55 B2 3,2008 Lamb 2002,002,2095 A1 1,2000 Watanabe 1,234,345,55 B2 3,2008 Lamb 2002,002,3957 A1 2,2000 Withchest et al. 2002,003,540 A1 1,2000 Watanabe 1,234,345,55 B2 3,2008 Lamb 2002,003,457 A1 2,2000 Withchest et al. A | | | | | | | | | | 7.224.480 B2 5.2007 Tanka et al. 7.812,860 B2 10.2010 King et al. 7.225.790 B2 6.2020 Silverbrook et al. 7.818,215 B2 10.2010 King et al. 7.225.760 B2 11.2010 Mandella et al. 7.826,641 B2 11.2010 Darrell et al. 7.826,641 B2 12.2011 King et al. 7.826,956 B2 8.2007 Gandhi et al. 7.826,864 B2 12.2011 Benson Stavely et al. 7.844,873 B2 5.2011 Benson Stavely et al. 7.844,873 B2 5.2011 Benson Stavely et al. 7.844,973 B2 5.2011 Benson Stavely et al. 7.844,929 B2 10.2007 Mandella et al. 8.846,156 B2 3.2012
King et al. 7.828,956 B2 9.2007 Mandella 7.828,956 B2 9.2007 Morris et al. 8.846,156 B2 3.2012 King et al. 7.828,956 B2 10.2007 Morris et al. 8.846,156 B2 3.2012 King et al. 7.828,956 B2 10.2007 Morris et al. 8.846,156 B2 3.2012 King et al. 7.828,956 B2 10.2007 Morris et al. 8.846,156 B2 3.2012 King et al. 7.839,467 B2 2.2012 King et al. 8.846,156 B2 3.2012 King et al. 7.839,467 B2 2.2012 King et al. 8.846,156 B2 3.2012 King et al. 7.839,467 B2 2.2012 King et al. 8.846,156 B2 3.2012 King et al. 7.839,467 B2 3.2008 Levy et al. 2002,002,993 A1 2,2002 Miller et al. 7.839,467 B2 3.2008 Levy et al. 2002,002,993 A1 2,2002 Miller et al. 7.836,168 B2 5.2008 Baker et al. 2002,003,457 A1 4,2002 Miller et al. 7.836,168 B2 5.2008 Baker et al. 2002,003,459 A1 5.2002 Miller et al. 7.836,168 B2 5.2008 Baker et al. 2002,003,459 A1 5.2002 Miller et al. 7.836,168 B2 5.2008 Baker et al. 2002,003,459 A1 5.2002 Miller et al. 7.404,434 B2 8.2008 King et al. 2002,003,450 A1 12.2002 Miller et al. 7.404,434 B2 8.2008 King et al. 2002,003,404 A1 3.2002 Miller et al. 7.404,434 B2 8.2008 King et al. 2002,003,440 A1 4.2002 Bouchard et al. 7.404,436 B2 9.2008 King et al. 2002,003,441 A1 2.2002 Miller et al. 7.404,436 B2 9.2008 King et al. 2002,003,441 A1 2.2003 Moores et al. 7.404,436 B2 9.2008 K | | | | | | | | | | 7.225.979 B2 6.2007 Silvebrook et al. 7.818.215 B2 10.2010 King et al. 7.225.974 B2 6.2007 Silvebrook et al. 7.826.641 B2 11.2010 Mandellat al. 7.230.747 B2 7.2007 Bresler et al. 7.831.912 B2 11.2010 King et al. 7.230.747 B2 7.2007 Currans et al. 7.872.669 B2 11.2010 King et al. 7.242.492 B2 7.2007 Currans et al. 7.872.669 B2 12.2011 King et al. 7.257.567 B2 8.2007 Gandhi et al. 7.941.433 B2 5.2011 Ramkumar et al. 7.269.596 B2 9.2007 Mandella 1. 7.941.919 B1 5.2011 Ramkumar et al. 7.269.596 B2 9.2007 Mandella 1. 7.961.909 B2 6.2011 Mandella et al. 7.284.192 B2 10.2007 Kashi et al. 8.111.927 B2 2.2012 King et al. 7.288.966 B2 10.2007 Mandella 1. 8.111.927 B2 2.2012 Vincent et al. 8.146.156 B2 3.2012 King et al. 7.285.966 B2 10.2007 Ward et al. 8.146.156 B2 3.2012 King et al. 7.235.183 B2 12.2008 Meier et al. 2010.0034237 Al 10.2001 Garahi 1. 7.235.193 B2 10.2007 Ward et al. 2010.0034237 Al 10.2001 Garahi 1. 7.235.193 B2 2.2008 Meier et al. 2010.0024237 Al 10.2001 Mandella 1. 7.235.193 B1 4.2008 Sikefano III 2002.00249781 Al 1. 2000 Minute et al. 7.335.193 B1 4.2008 Distellano III 2002.00249781 Al 2000 Scheederman 3.255.193 B1 4.2008 Distellano III 2002.00249781 Al 2000 Scheederman 3.255.193 B1 4.2008 Distellano III 2002.003591 Al 5.2002 Scheederman 3.255.2008 Dekose et al. 2002.0055919 Al 5.2002 Scheederman 3.255.2008 Dekose et al. 2002.0055919 Al 5.2002 Scheederman 3.255.2008 Dekose et al. 2002.0055919 Al 5.2002 Scheederman 3.255.2008 Dekose et al. 2002.005498 Al 6.2002 Scheederman 3.255.2008 Dekose et al. 2002.005498 Al 6.2002 Scheederman 3.255.2008 Dekose et al. 2002.005498 Al 6.2002 Scheederman 3.255.2008 3.2555.2008 Scheederman 3.2555.2008 Scheederman 3.2555.2008 Scheederman 3.2555.2008 Scheederman 3.2 | | | | | | | | | | 7,234,645 B2 6/2007 Silverbrook et al. 7,826,641 B2 11/2010 Mandella et al. 7,237,474 B2 7/2007 Bresler et al. 7,881,912 B2 1/2010 Mandella et al. 7,241,492 B2 7/2007 Croshima 7,880,4670 B2 2/2011 Margle et al. 7,241,493 B2 2/2011 King et al. 7,241,493 B2 2/2011 King et al. 7,241,493 B2 5/2011 Benson 7,262,798 B2 8/2007 Slavely et al. 7,941,493 B2 5/2011 Benson 7,262,798 B2 8/2007 Mandella 7,961,909 B2 6/2011 Mandella et al. 7,241,493 B2 5/2011 Mandella et al. 7,241,493 B2 10/2007 Margle et al. 8,111,927 B2 1/2011 Mandella 8,111,920 Mandella et al. 8,111,920 Ma | | | | | | | 10/2010 | King et al. | | 7,239,747 B2 7,2007 Bresler et al. 7,831,912 B2 112,010 King et al. 7,242,492 B3 7,2007 Currans et al. 7,831,912 B2 1,2011 Darrell et al. 7,241,433 B2 2,2011 King et al. 7,245,75,676 B2 8,2007 Toshima 7,894,670 B2 2,2011 King et al. 7,240,191 B1 5,2011 Benson 7,263,996 B2 9,2007 Mandella 7,961,909 B2 5,2011 Benson Mandella 7,961,909 B2 10,2007 Liu et al. 8,082,258 B2 1,22011 King et al. 7,241,191 B1 5,2011 Ramkumar et al. 8,111,927 B2 10,2007 Kashi et al. 8,111,927 B2 2,2012 King et al. 1,224,192 B1 10,2007 Kashi et al. 8,111,927 B2 2,2012 King et al. 1,225,193 B2 1,22012 King et al. 1,225,193 B2 1,22013 King et al. 1,22012 King et al. 1,225,193 B2 1,22013 King et al. 1,22012 King et al. 1,225,193 B2 1,22013 King et al. 1,22012 King et al. 1,225,193 B2 1,22013 King et al. 1,22012 Kinchaelis al | | | | | | | 11/2010 | Mandella et al. | | 7,287,567 B2 82,007 Toshima 7,894,670 B2 22,011 Sing et al 7,260,578 B3 82,007 Gandhi et al 7,941,433 B2 52,011 Senson 7,026,798 B2 9,2007 Shavely et al 7,941,939 B1 5,2011 Sambet et al 7,268,956 B2 9,2007 Mandella 7,961,909 B2 12,2011 Kumar et al. 7,283,902 B2 10,2007 Kashi et al 8,111,927 B2 12,2011 Kumar et al. 7,283,902 B2 10,2007 Kashi et al 8,111,927 B2 2,2012 Kumar et al. 7,283,906 B2 10,2007 Ward et al. 2001,0005431 A1 12,2001 Black 7,283,803 B2 2,2008 Polonowski 2001,0005431 A1 12,200 Black 7,331,933 B2 2,2008 Meier et al. 2002,0002,2993 A1 2,2002 Miller et al. 2002,0002,000,000,000,000,000,000,000,0 | 7,239,74 | 17 B2 | | | | | | | | 7,260,534 B2 8/2007 Gamdhi et al. 7,941,433 B2 5/2011 Benson 7,262,798 B2 8/2007 Stavely et al. 7,949,191 B1 5/2011 Ramkumar et al. 7,262,996 B2 9/2007 Mandella 7,961,909 B2 6/2011 Mandella et al. 8,111,927 B2 2/2012 Vincent 7,295,101 B2 11/2007 Ward et al. 2001/0035411 A1 1/2000 Black B2 001/003541 A1 1/2000 Black B2 002/002993 A1 2/2000 Willer et al. 2002/0049781 A1 1/2002 Watanabe B2 002/0049781 A1 1/2002 Michaelis et al. 8,111,927 B2 1/2002 Michaelis et al. 8,111,927 B2 1/2002 Michaelis et al. 1/2002/0049781 A1 1/2002 Watanabe B2 002/0049781 002/004/00 | | | | | | | | | | 7,262,798 B2 8/2007 Stavely et al. 7,949,191 B1 6,2007 Mandella 7,268,195 B2 9/2007 Mandella 7,268,195 B2 9/2007 Mandella 7,268,195 B2 9/2007 Mandella 7,268,195 B2 9/2007 Mandella 8,882,258 B2 10/2007 Kashi et al. 8,111,277 B2 2,2011 Kumar et al. 1,228,806 B2 10/2007 Kashi et al. 8,111,277 B2 2,2012 Kim, et al. 1,2201 Ramkumar R | | | | | | | | | | 7,268,956 B2 9/2007 Mandella 7,961,909 B2 | | | | | | | | | | 7.284_102 102_007 Kashi et al. 8.111.927 B2 22_012 Vincent et al. | | | 9/2007 | Mandella | | | | | | 7.289.806 B2 10/2007 Morris et al. 2.001/003427 A1 10/2001 Garabi 1.7027 Ward et al. 2.001/0035411 A1 12/2001 Black 3.731,523 B2 2/2008 Polonowski 2.001/0035411 A1 12/2001 Black 3.731,523 B2 2/2008 Meier et al. 2.002/0022993 A1 2/2002 Miller et al. 2.002/0022993 A1 2/2002 Miller et al. 2.002/0023957 2/2003 Mil | | | | | | | | | | 7.395,101 B2 11/2007 Ward et al. 2001/0034237 A1 10/2001 Black 7.331,523 B2 2/2008 Polonowski 2001/0055411 A1 12/2001 Black 2002/0012065 A1 1/2002 Maranabe 2002/0012093 A1 2/2002 Miller et al. 5/2002 Sengisson 2/2002 Miller et al. 2002/0012093 A1 5/2002 Sengisson 2/2002/0012093 Sendisson 2/2002/0012093 A1 5/2002 Sendisson 2/2002/0012093 A1 5/2002 Sendisson 2/2002/0012093 A1 5/2002 Sendisson 2/2002/0012093 A1 5/2002 Sendisson 2/2002/0012093 A1 5/2003 Seller 2/2002/0012093 A1 5/2003 Seller 2/2003/0012093 Sell | | | | | | | | | | 7.327,883 B2 2/2008 Polonowski 2001/0055411 A1 12/2001 Black 7.331,523 B2 2/2008 Meier et al. 2002/001/2053 A1 2/2002 Watanabe 7.339,467 B2 3/2008 Levy et al. 2002/002397 A1 2/2002 Michaelis et al. 2002/002397 A1 2/2002 Michaelis et al. 2002/002397 A1 2/2002 Michaelis et al. 2002/0043978 A1 4/2002 Baker et al. 2002/004398 A1 4/2002 Baker et al. 2002/004399 A1 5/2002 Schneiderman 7.362,902 B1 4/2008 Baker et al. 2002/0063409 A1 5/2002 Schneiderman 8/2002/0053919 A1 5/2002 Schneiderman 7.362,902 B1 4/2008 Boker et al. 2002/0067308 A1 6/2002 Schneiderman 7.392,475 B1 6/2008 Ratelifi, III 2002/0097300 A1 6/2002 Sage 7.392,287 B2 6/2008 Ratelifi, III 2002/0091300 A1 6/2002 Sage 7.392,475 B1 6/2008 Leban et al. 2002/0091671 A1 7/2002 Prokoph 7.404,520 B2 7/2008 Vesuna 2002/0091928 A1 7/2002 Souchard et al. 2002/0011960 A1 8/2002 Inos et al. 2002/0011960 A1 8/2002 Christy 7.415,670 B2 8/2008 King et al. 2002/0118417 A1 10/2002 Christy 7.415,670 B2 8/2008 King et al. 2002/0118417 A1 10/2002 Katsuyama et al. 7.424,543 B2 9/2008 King et al. 2002/0169509 A1 11/2002 Katsuyama et al. 7.424,543 B2 9/2008 Rice, III 2002/018447 A1 1/2002 Newman et al. 382/176 7.433,893 B2 10/2008 King et al. 2003/004919 A1 1/2003 Keskar et al. 2003/004919 A1 1/2003 Keskar et al. 2003/00491 A1 1/2003 Keskar et al. 2003/004934 2003/004938 A1 1/2003 Keskar et al. 2003/004938 A1 1/2003 Ke | | | | | 2001/0034237 | A1 | 10/2001 | Garahi | | 2002/0022993 Al 22002 22003 22004
22004 22004 22004 22004 22004 22004 22004 22004 22004 22004 22004 22004 22004 22004 22004 22004 22 | | | | | | | | | | 2002/0023957 Al 22002 Michaelis et al. | | | | | | | | | | 1,735,199 Bit 4/2008 Baker et al. 2002/0054959 At 5/2002 Schneiderman 7,376,2902 Bit 4/2008 Baker et al. 2002/0055919 At 5/2002 Schneiderman 7,376,2903 Bit 4/2008 Baker et al. 2002/0055919 At 5/2002 Mikheev 7,383,263 Bit 6/2008 Ratcliff, III 2002/0073000 At 6/2002 Robertson 6/2002 Robertson 7,392,475 Bit 6/2008 Ratcliff, III 2002/0091073 At 7/2002 Robertson 7,404,520 Bit 7/2008 Vesuna 2002/0091928 At 7/2002 Prokoph 7/2004 7/2005 Prokoph 7/2005 Prokoph 7/2005 Prokoph 7/2005 Prokoph 7/2007 P | | | | | | | | | | 7,362,902 B1 4/2008 Baker et al. 2002/0054059 A1 5/2002 Schneiderman (7,362,902 B) DeRose et al. 2002/0055919 A1 5/2002 Schneiderman (7,383,263 B2 6/2008 Goger 2002/0067308 A1 6/2002 Robertson (7,383,263 B2 6/2008 Loben et al. 2002/0091671 A1 7/2002 Prokoph (7,404,520 B2 7/2008 Vesuna 2002/00919671 A1 7/2002 Prokoph (7,404,520 B2 7/2008 Vesuna 2002/0091968 A1 7/2002 Bouchard et al. (7,404,520 B2 7/2008 Vesuna 2002/0091968 A1 7/2002 Bouchard et al. (7,412,158 B2 8/2008 Lamming et al. 2002/0115401 A1 8/2002 Inrise et al. (7,412,158 B2 8/2008 Lamming et al. 2002/0138476 A1 9/2002 Christy (7,415,670 B2 8/2008 Kakkori 2002/0138476 A1 9/2002 Christy (7,415,670 B2 8/2008 King et al. 2002/0138476 A1 9/2002 Christy (7,424,434 B2 9/2008 King et al. 2002/0169509 A1 11/2002 Katsuyama et al. (7,424,434 B2 9/2008 King et al. 2002/0191847 A1* 12/2002 Nowman et al. (7,433,068 B2 10/2008 Stevens et al. 2002/0191847 A1* 12/2002 Stonedahl (7,433,439 B2 10/2008 Christy (7,433,439 B2 10/2008 King et al. 2003/0019939 A1 1/2003 Sellen (7,433,439 B2 10/2008 King et al. 2003/0019939 A1 1/2003 Sellen (7,434,4389 B2 10/2008 King et al. 2003/0019939 A1 1/2003 Sellen (7,434,4387 B2 2/2009 Phillips et al. 2003/0033411 A1 2/2003 Sellen (7,434,4387 B2 2/2009 Phillips et al. 2003/003341 A1 4/2003 Noores, Jr. et al. (7,434,4387 B2 2/2009 Phillips et al. 2003/003345 A1 5/2003 Sinceusos (7,505,785 B2 3/2009 Call et al. 2003/003345 A1 5/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et al. 2003/003345 A1 8/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et al. 2003/003345 A1 8/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et al. 2003/001349678 A1 8/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et al. 2003/01349678 A1 8/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et al. 2003/01349678 A1 8/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et al. 2003/01349678 A1 8/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et al. 2003/01349678 A1 8/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et al. 2003/01349678 A1 8/2003 Sinceusos (7,505,785 B2 3/2009 Vellommer et | | | | | | | 4/2002 | Bengtson | | 7,383,263 B2 6/2008 Ratcliff, III 2002/0073000 A1 6/2002 Robertson 7,392,287 B2 6/2008 Ratcliff, III 2002/0073000 A1 6/2002 Sage 7,392,2475 B1 6/2008 Leban et al. 2002/0091671 A1 7/2002 Prokoph 7,404,520 B2 7/2008 Vesuna 2002/0091928 A1 7/2002 Bouchard et al. 2002/0091841 A1 8/2002 Irons et al. 2002/01138476 A1 9/2002 Suwa et al. 2002/01138476 A1 9/2002 Suwa et al. 2002/01138476 A1 9/2002 Suwa et al. 2002/0114155 B2 8/2008 Rakkori 2002/0154817 A1 10/2002 Suwa et al. 2002/0154817 A1 10/2002 Suwa et al. 2002/0154817 A1 10/2002 Ratsuyama et al. 11/2003 Rice, III 2002/0169509 A1 11/2002 Robertson 382/176 7,433,068 B2 10/2008 Stevens et al. 2002/0191847 A1* 12/2002 Newman et al. 11/2003 Newman et al. 11/2003 Robertson 2002/019199 A1 11/2003 Stevens et al. 2002/019199 A1 11/2003 Sellen 2003/0004991 A1 1/2003 2003/0004901 Se | | | | | | | | | | 7,392,287 B2 6/2008 Ratcliff, III 2002/0091671 A1 7/2002 Prokoph 7,392,475 B1 6/2008 Leban et al. 2002/0091928 A1 7,2002 Prokoph 7,404,520 B2 7/2008 Vesuna 2002/0091928 A1 7,2002 Bouchard et al. 7,409,434 B2 8/2008 Lamming et al. 2002/011940 A1 8/2002 Christy 2 Prokoph 7,412,158 B2 8/2008 Kakkori 2002/0125411 A1 9/2002 Christy 2 Prokoph 7,412,155 B2 9/2008 Kakkori 2002/0154817 A1 10/2002 Katsuyama et al. 1,424,543 B2 9/2008 King et al. 2002/0154817 A1 10/2002 Katsuyama et al. 1,424,543 B2 9/2008 King et al. 2002/0169509 A1 11/2002 Huang et al. 1,426,486 B2 9/2008 Treibach-Heck et al. 2002/0199198 A1 12/2002 Stonedahl 3 Comy 2003/004991 A1 12/2002 Stonedahl 1,437,437,023 B2 10/2008 King et al. 2003/004991 A1 12/2003 Stonedahl 3 Comy 2003/003993 A1 12/2003 Scellen 1,437,437,023 B2 10/2008 King et al. 2003/003941 A1 2/2003 Nada 7,437,437,409 B2 1/2009 Call et al. 2003/003941 A1 2/2003 Nada 7,437,438 B2 2/2009 Barnes, Jr. 2003/0034042 A1 3/2003 Nada 7,437,438 B2 2/2009 Barnes, Jr. 2003/0063814 A1 4/2003 Nada 7,457,112 B2 2/2009 Phillips et al. 2003/0039341 A1 2/2003 Santosuosso 7,505,785 B2 3/2009 Callaghan et al. 2003/0039340 A1 5/2003 Santosuosso 7,505,785 B2 3/2009 Vollkommer et al. 2003/0173405 A1 9/2003 Abir 19/2009 Vallkommer et al. 2003/0173405 A1 9/2003 Abir 19/2009 Valls Destroit All 2003/0173405 A1 9/2003 Abir 19/2009 Proudfoot et al. 2003/0173405 A1 9/2003 Wilz, Sr. et al. 11/2003 Ring et al. 2003/0173405 A1 9/2003 Watson et al. 11/2003 Ring et al. 2003/0173405 A1 9/2003 Watson et al. 11/2003 Proudfoot et al. 2003/0173405 A1 9/2003 Barnes, Jr. 512,254 B2 9/2009 Wall barrous 2003/0173405 A1 9/2003 Siber 7,552,381 B2 6/2009 Barrus 2003/0173405 A1 9/2003 Siber 8/552,381 B2 6/2009 Walls 2003/0173405 A1 9/2003 Siber 8/552,381 B2 6/2009 Walls 2003/0173405 A1 1/2004 Wu Satson et al. 2003/0173405 A1 1/2004 Wu Satson et al. 2003/0173405 A1 1/2003 Barnes, Jr. 513,647 B2 9/2009 King et al. 2003/0202537 A1 1/2004 Wu Mannik et al. 7,599,844 B2 10/2009 King et al. 2004/0006829 A1 1/2004 Allen et al. 1/2004 Allen et al | | | | | | | | | | 7,392,475 B1 6/2008 Leban et al. 2002/0091671 A1 7/2002 Prokoph 7,404,520 B2 7/2008 Vesuna 2002/0091928 A1 7/2002 Irons et al. 7,404,520 B2 7/2008 Kakkori 2002/011940 A1 8/2002 Irons et al. 2002/0125411 A1 9/2002 Christy 7,415,670 B2 8/2008 Hull et al. 2002/0154817 A1 10/2002 Suwa et al. 7,421,155 B2 9/2008 King et al. 2002/0154817 A1 10/2002 Suwa et al. 7,421,155 B2 9/2008 Rice, III 2002/0169509 A1 11/2002 West and et al. 2002/0194847 A1* 12/2002 Newman et al. 382/176 A1,333,068 B2 10/2008 Stevens et al. 2002/019198 A1 12/2002 Newman et al. 382/176 A1,333,068 B2 10/2008 Stevens et al. 2002/019198 A1 12/2002 Newman et al. 382/176 A1,333,068 B2 10/2008 Stevens et al. 2003/0004991 A1 12/2003 Newman et al. 2003/0004991 A1 12/2003 Newman et al. 2003/00039411 A1 2/2003 Nada A1,4487,112 B2 2/2009 Pallips et al. 2003/0039411 A1 2/2003 Nada A1,4487,112 B2 2/2009 Philyaw 2003/0093400 A1 3/2003 Moores, Jr. 406,638 B2 2/2009 Philyaw 2003/0093400 A1 3/2003 Moores, Jr. 406,638 B2 2/2009 Philyaw 2003/0093400 A1 3/2003 Moores, Jr. 406,638 B2 3/2009 Philyaw 2003/0093400 A1 5/2003 Moores, Jr. 406,638 B2 3/2009 Philyaw 2003/0093400 A1 5/2003 Moores, Jr. 406,638 B2 3/2009 Philyaw 2003/0093400 A1 5/2003 Moores, Jr. 406,638 B2 3/2009 Philyaw 2003/0093400 A1 8/2003 Moores, Jr. 406,638 B2 3/2009 Philyaw 2003/0093400 A1 8/2003 Moores, Jr. 406,638 B2 3/2009 Perkowski 2003/0149678 A1 8/2003 Skurdal et al. 2003/0159361 A1 10/2003 Moore et al. 7,533,649 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Siber A1 1/2003 Moore et al. 7,534,647 B2 8/2009 Carro et al. 2003/018751 A1 10/2003 Moore et al. 7,594,649 B2 8/2009 Carro et al. 2003/0223637 A1 1/2003 Moore et al. 7,594,649 B2 9/2009 Wyl et al. 2003/0223637 A1 1/2004 Mannik et al. 7,596,649 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,844 B2 10/2009 King et al. 2004/00063200 A1 2/2004 Millen et | 7,383,26 | 03 B2
27 B2 | | | | | | | | 7,404,520 B2 7,2008 Vesuna 2002/0019198 A1 7,2002 Bouchard et al. 7,409,434 B2 8/2008 Lamming et al. 2002/011960 A1 8,2002 Irons et al. 7,415,670 B2 8/2008 Hull et al. 2002/0138476 A1 9/2002 Christy Suwa et al. 7,421,155 B2 9/2008 King et al. 2002/0158417 A1 10/2002 Katsuyama et al. 1,420,434 B2 9/2008 Rice, III 2002/0169509 A1 11/2002 Katsuyama et al. 1,420,436 B2 9/2008 Rice, III 2002/019198 A1 12/2002 Newman et al. 382/176 A1 8/2003 Nada Sevens et al. 2002/019198 A1 12/2002 Newman et al. 1,433,893 B2 10/2008 Lowry 2003/0004991 A1 12/2002 Stonedahl Seskar et al. 2003/001999 A1 12/2003 Sellen 7,443,893 B2 10/2008 Lowry 2003/0004991 A1 12/2003 Sellen 7,447,4809 B2 1/2009 Carl et al. 2003/0039411 A1 2/2003 Sellen 7,447,4809 B2 1/2009 Carl et al. 2003/0039411 A1 2/2003 Nada Nores, Jr. 2003/0039441 A1 4/2003 Sellen 7,4487,112 B2 2/2009 Phillips et al. 2003/0039440 A1 5/2003 Santosuosso 7,505,785 B2 3/2009 Phillyaw 2003/0093400 A1 5/2003 Santosuosso 7,505,785 B2 3/2009 Iblotson 2003/0149678 A1 8/2003 Liu et al. 2003/0149678 A1 8/2003 Liu et al. 2003/0173405 A1 8/2003 Sibrer 7,533,040 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Sibrer 7,533,040 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Sibrer 7,552,381 B2 6/2009 Barrus 2003/0195851 A1 10/2003 Watson et al. 7,574,407 B2 8/2009 Valleh al. 2003/0195851 A1 10/2003 More et al. 7,574,407 B2 8/2009 Valleh al. 2003/01223637 A1 11/2003 More et al. 7,574,407 B2 8/2009 Valleh al. 2003/01223637 A1 11/2003 More et al. 7,594,509 B2 9/2009 Weyl et al. 2003/01223637 A1 11/2003 More et al. 7,594,609 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006320 A1 1/2004 Kling et al. 2004/0002320 A1 1/2004 Mulnik et al. 2004/002320 A1 1/2004 Millen et al. 2004/002320 A1 1/2004 Allen et al. 2004/002320 A1 1/2004 Allen et al. | | | | | | | | | | 7.412,158 B2 8/2008 Kakkori 2002/0125411 A1 9/2002 Christy 7.415,670 B2 8/2008 Hull et al. 2002/0154817 A1 10/2002 Katsuyama et al. 7.421,558 B2 9/2008 Rice, III 2002/0169509 A1 11/2002 Katsuyama et al. 7.424,543 B2 9/2008 Rice, III 2002/0169509 A1 11/2002 Katsuyama et al. 7.426,486 B2 9/2008 Rice, III 2002/0191847 A1* 12/2002 Nowman et al. 7.433,893 B2 10/2008 Sizewans et al. 2002/0199198 A1 12/2002 Stonedahl
7.433,893 B2 10/2008 King et al. 2003/0004991 A1 1/2003 Keskar et al. 7.474,809 B2 10/2008 King et al. 2003/00039411 A1 2/2003 Sallen 7.474,809 B2 1/2009 Barnes, Jr. 2003/0043042 A1 1/2003 Sellen 7.493,487 B2 2/2009 Philipse et al. 2003/0033411 A1 2/2003 Moores, Jr. et al. 7.493,487 B2 2/2009 Philipse et al. 2003/0033414 A1* 4/2003 Herley | 7,404,52 | 20 B2 | 7/2008 | Vesuna | | | | | | 7,415,670 B2 8/2008 Hull et al. 2002/0138476 A1 9/2002 Suwa et al. 7,421,155 B2 9/2008 King et al. 2002/0169509 A1 11/2002 Huang et al. 11/20204 Huang et al. 2002/0169509 A1 11/2002 Huang et al. 2002/0191847 A1 12/2002 Newman et al. 382/176 Newman et al. 2002/0191847 A1 12/2002 Newman et al. 382/176 Newman et al. 2002/0191847 A1 12/2002 Newman et al. 382/176 Newman et al. 2002/0191847 A1 12/2002 Newman et al. 382/176 Newman et al. 2002/0191847 A1 12/2002 Newman et al. 382/176 Newman et al. 2003/0004991 A1 1/2003 Newman et al. 382/176 Newman et al. 2003/0004991 A1 1/2003 2003/004991 A1 1/2003 Newman et al. 2003/040404 A1 3/2003 Noores, Jr. et al. 2003/040404 A1 3/2003 Noores, Jr. et al. 2003/040404 A1 3/2003 Noores, Jr. et al. 2003/093404 A1 5/2003 Herley 382/255 Newman et al. 2003/093404 A1 5/2003 Herley 382/255 Newman et al. 2003/093404 A1 5/2003 Liu et al. 2003/09340 A1 5/2003 Newman et al. 2003/0149678 A1 8/2003 2003/01 | | | | | | | | | | 7,421,155 B2 9/2008 King et al. 2002/0154817 A1 10/2002 Katsuyama et al. 7,424,543 B2 9/2008 Rice, III 2002/0169509 A1 11/2002 Huang et al. 382/176 7,426,486 B2 9/2008 Treibach-Heck et al. 2002/0199198 A1 12/2002 Stonedahl 7,433,068 B2 10/2008 Stevens et al. 2002/0199198 A1 12/2002 Stonedahl 7,433,068 B2 10/2008 King et al. 2003/0004991 A1 1/2003 Keskar et al. 2003/0019939 A1 1/2003 Sellen 7,474,809 B2 10/2008 King et al. 2003/0039411 A1 2/2003 Nada 7,487,112 B2 2/2009 Barnes, Jr. 2003/0039411 A1 2/2003 Nada 7,487,112 B2 2/2009 Philips et al. 2003/003411 A1 2/2003 Nada 7,487,112 B2 2/2009 Philips et al. 2003/0039410 A1 5/2003 Santosuosso 7,505,785 B2 3/2009 Philyaw 2003/0093400 A1 5/2003 Santosuosso 7,505,785 B2 3/2009 Callaghan et al. 2003/0030341 A1 8/2003 Cook 7,512,254 B2 3/2009 Vollkommer et al. 2003/0030340 A1 5/2003 Santosuosso 7,503,785 B2 3/2009 Vollkommer et al. 2003/0149678 A1 8/2003 Cook 7,512,254 B2 3/2009 Vollkommer et al. 2003/0149678 A1 8/2003 Skurdal et al. 358/1.2 7,533,040 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Wilz, Sr. et al. 7,536,547 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Wilz, Sr. et al. 7,552,075 B1 6/2009 Walsh 2003/0173405 A1 9/2003 Wilz, Sr. et al. 7,552,075 B1 6/2009 Walsh 2003/0187351 A1 10/2003 Ong 7,551,312 B1 7/2009 Proudfoot et al. 2003/012527 A1 11/2003 Moore et al. 7,594,407 B2 8/2009 Carro et al. 2003/0223637 A1 12/2003 Simske et al. 7,599,560 B2 9/2009 King et al. 2003/0025547 A1 12/2003 Simske et al. 7,599,580 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Choi et al. 7,696,674 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Choi et al. 7,696,644 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Choi et al. 7,696,644 B2 10/2009 King et al. 2004/00028295 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Blume 7,613,6364 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,424,543 B2 9/2008 Rice, III 2002/0191847 A1 * 1/2002 Huang et al. | | | | | 2002/0154817 | A1 | 10/2002 | Katsuyama et al. | | 7,433,068 B2 10/2008 Stevens et al. 2002/0199198 A1 12/2002 Stonedahl 7,433,893 B2 10/2008 King et al. 2003/0004991 A1 1/2003 Sellen 1/2003 Variation (Sing et al. 2003/0019939 A1 1/2003 Sellen 1/2003 Sellen 1/2009 Carl et al. 2003/0039411 A1 2/2003 Nada 3/2003 Moores, Jr. et al. 2003/0034024 A1 3/2003 Moores, Jr. et al. 2003/0034024 A1 3/2003 Moores, Jr. et al. 2003/0034024 A1 3/2003 Moores, Jr. et al. 2003/0039410 A1 5/2003 Santosuosso Philyaw 2003/0093400 A1 5/2003 Santosuosso 7,505,785 B2 2/2009 Philyaw 2003/0093400 A1 5/2003 Santosuosso 2003/0149678 A1 8/2003 Santosuosso 2003/0149678 A1 8/2003 Subratal et al. 2003/0149678 A1 8/2003 Skurdal et al. 2003/0149678 A1 8/2003 Skurdal et al. 2003/0149678 A1 8/2003 Skurdal et al. 358/1.2 N.533,040 B2 5/2009 Verkowski 2003/0171910 A1 9/2003 Sibrer 2003/015936 A1 8/2003 10/2003 Sibrer 2003/015936 A1 10/2003 Sibrer 2003/015936 A1 10/2003 Moore et al. 2003/022033 A1 10/2003 Moore et al. 2003/022033 A1 11/2003 Barnes, Jr. 7,552,075 B1 6/2009 Walsh 2003/022033 A1 10/2003 Moore et al. 2003/022033 A1 11/2003 Barnes, Jr. 7,554,407 B2 8/2009 Carro et al. 2003/022033 A1 11/2003 Barnes, Jr. 7,554,606 B2 9/2009 Weyl et al. 2003/022033 A1 11/2003 Barnes, Jr. 7,594,609 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Wu 4. 7,596,269 B2 9/2009 King et al. 2004/0006609 A1 1/2004 Mannik et al. 7,599,580 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006300 A1 1/2004 Choi et al. 7,599,844 B2 10/2009 King et al. 2004/0006300 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 2004 Allen et al. | 7,424,54 | 13 B2 | 9/2008 | Rice, III | | | | | | 7,433,893 B2 10/2008 Lowry 2003/004991 A1 1/2003 Keskar et al. 7,437,023 B2 10/2008 King et al. 2003/0019939 A1 1/2003 Sellen 7,474,809 B2 1/2009 Barnes, Jr. 2003/0039411 A1 2/2003 Moores, Jr. et al. 7,487,112 B2 2/2009 Phillips et al. 2003/003043042 A1 3/2003 Moores, Jr. et al. 7,493,487 B2 2/2009 Phillips et al. 2003/003340 A1 5/2003 Santosuosso 7,505,785 B2 3/2009 Callaghan et al. 2003/0034045 A1 5/2003 Santosuosso 7,505,956 B2 3/2009 Ibbotson 2003/0149678 A1 8/2003 Cook 7,512,254 B2 3/2009 Vollkommer et al. 2003/0149678 A1 8/2003 Skurdal et al. 2003/017910 A1 9/2003 Abir 7,533,040 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Silber 7,536,547 B2 5/2009 Van Den Tillaart 2003/018379 A1 9/2003 Silber 7,552,381 B2 6/2009 Walsh 2003/0187751 A1 10/2003 Watson et al. 2003/0195851 A1 10/2003 Moore et al. 2003/012527 A1 11/2003 Barnes, Jr. 7,587,412 B2 9/2009 Proudfoot et al. 2003/0223637 A1 12/2003 Barnes, Jr. 2003/0223637 A1 12/2003 Barnes, Jr. 2003/0223637 A1 12/2003 Barnes, Jr. 2003/0223637 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Wu 7,590,669 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Monnik et al. 2004/0006509 A1 1/2004 Monnik et al. 2004/001247 A1 1/2004 Krohn et al. 2004/0016437 A1 1/2004 Krohn et al. 2004/0016437 A1 1/2004 Krohn et al. 2004/0016437 A1 1/2004 Kling et al. 2004/0023200 a | | | | | | | | | | 7,437,023 B2 10/2008 King et al. 2003/0019939 A1 1/2003 Sellen 7,474,809 B2 1/2009 Carl et al. 2003/0039411 A1 2/2003 Nada 7,487,112 B2 2/2009 Barnes, Jr. 2003/0043042 A1 3/2003 Moores, Jr. et al. 493,487 B2 2/2009 Phillips et al. 2003/0033400 A1 5/2003 Santosuosso 7,496,638 B2 2/2009 Phillyaw 2003/0093400 A1 5/2003 Santosuosso 7,505,785 B2 3/2009 Callaghan et al. 2003/0093545 A1 5/2003 Liu et al. 2003/0049678 A1 8/2003 Cook 7,512,254 B2 3/2009 Vollkommer et al. 2003/0149678 A1 8/2003 Skurdal et al. 358/1.2 7,523,067 B1 4/2009 Nakajima 2003/0171910 A1 9/2003 Shirr 37,333,040 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Silber 7,533,040 B2 5/2009 Van Den Tillaart 2003/0182399 A1 9/2003 Silber 7,552,075 B1 6/2009 Walsh 2003/0182399 A1 9/2003 Silber 2003/0182517 A1 11/2003 Moore et al. 2003/0223637 A1 11/2003 Moore et al. 2003/0223637 A1 11/2003 Barnes, Jr. 7,587,412 B2 9/2009 Proudfoot et al. 2003/0223637 A1 11/2003 Barnes, Jr. 7,587,412 B2 9/2009 King et al. 2003/0223637 A1 12/2003 Simske et al. 7,599,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,844 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,844 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/00028295 A1 2/2004 Blume 2004/00182895 A1 2/2004 Allen et al. | | | | | | | 1/2003 | Keskar et al. | | 7,474,809 B2 1/2009 Carl et al. 2003/0039411 A1 2/2003 Nada 7,487,112 B2 2/2009 Barnes, Jr. 2003/0043042 A1 3/2003 Moores, Jr. et al. 7,493,487 B2 2/2009 Phillips et al. 2003/0063814 A1* 4/2003 Herley | | | | | 2003/0019939 | A1 | 1/2003 | Sellen | | 7,493,487 B2 2/2009 Phillips et al. 2003/0063814 A1* 4/2003 Herley | 7,474,80 | 9 B2 | | | | | | | | 7,496,638 B2 2/2009 Philyaw 2003/0093400 A1 5/2003 Santosuosso 7,505,785 B2 3/2009 Callaghan et al. 2003/0093545 A1 5/2003 Liu et al. 7,505,956 B2 3/2009 Ibbotson 2003/0149678 A1 8/2003 Cook 7,512,254 B2 3/2009 Vollkommer et al. 2003/0171910 A1 9/2003 Skurdal et al | | | | | | | | | | 7,505,785 B2 3/2009 Callaghan et al. 2003/0093545 A1 5/2003 Cook 7,512,254 B2 3/2009 Vollkommer et al. 2003/0149678 A1 8/2003 Skurdal et al. 358/1.2 7,523,067 B1 4/2009 Nakajima 2003/0171910 A1 9/2003 Abir 7,533,040 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Wilz, Sr. et al. 7,536,547 B2 5/2009 Van Den Tillaart 2003/0182399 A1 9/2003 Silber 7,552,075 B1 6/2009 Walsh 2003/0187751 A1 10/2003 Watson et al. 2003/0187751 A1 10/2003 Ong 7,561,312 B1 7/2009 Proudfoot et al. 2003/0212527 A1 11/2003 Moore et al. 2003/0220835 A1 11/2003 Barnes, Jr. 7,574,407 B2 8/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 7,591,597 B2 9/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 2003/0223637 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2003/0225547 A1 12/2003 Paradies 7,599,580 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,844 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,505,956 B2 3/2009 Ibbotson 2003/0149678 A1 8/2003 Cook 7,512,254 B2 3/2009 Vollkommer et al. 2003/016975 A1* 8/2003 Skurdal et al | | | | | | | | | | 7,523,067 B1 4/2009 Nakajima 2003/0171910 A1 9/2003 Abir 7,533,040 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Silber 7,536,547 B2 5/2009 Van Den Tillaart
2003/0182399 A1 9/2003 Silber 7,552,075 B1 6/2009 Walsh 2003/0187751 A1 10/2003 Watson et al. 7,552,381 B2 6/2009 Barrus 2003/0195851 A1 10/2003 Ong 7,561,312 B1 7/2009 Proudfoot et al. 2003/0212527 A1 11/2003 Moore et al. 7,574,407 B2 8/2009 Carro et al. 2003/0220835 A1 11/2003 Barnes, Jr. 7,587,412 B2 9/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 7,591,597 B2 9/2009 Wayl et al. 2003/0225547 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2004/0001217 A1 1/2004 Wu 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Wu 7,599,580 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,523,040 B2 5/2009 Perkowski 2003/0173405 A1 9/2003 Wilz, Sr. et al. 7,536,547 B2 5/2009 Van Den Tillaart 2003/0182399 A1 9/2003 Silber 7,552,075 B1 6/2009 Walsh 2003/0187751 A1 10/2003 Watson et al. 7,552,381 B2 6/2009 Barrus 2003/0195851 A1 10/2003 Ong 7,561,312 B1 7/2009 Proudfoot et al. 2003/0212527 A1 11/2003 Moore et al. 11/2003 Moore et al. 2003/0212527 A1 11/2003 Barrus, Jr. 7,574,407 B2 8/2009 Carro et al. 2003/0220835 A1 11/2003 Barres, Jr. 7,587,412 B2 9/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 7,591,597 B2 9/2009 Weyl et al. 2003/0225547 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2004/0001217 A1 1/2004 Wu 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,580 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 1/2004 Choi et al. 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,536,547 B2 5/2009 Van Den Tillaart 2003/0182399 A1 9/2003 Silber 7,552,075 B1 6/2009 Walsh 2003/0187751 A1 10/2003 Watson et al. 7,552,381 B2 6/2009 Barrus 2003/0195851 A1 10/2003 Ong 11/2003 Moore et al. 7,574,407 B2 8/2009 Carro et al. 2003/0220835 A1 11/2003 Barres, Jr. 7,587,412 B2 9/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 7,591,597 B2 9/2009 Pasqualini et al. 2003/0225547 A1 12/2003 Simske et al. 7,593,605 B2 9/2009 King et al. 2004/0001217 A1 1/2004 Wu 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Wu 7,599,580 B2 10/2009 King et al. 2004/0006509 A1 1/2004 Wannik et al. 7,599,844 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 1/2004 Choi et al. 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,552,075 B1 6/2009 Walsh 2003/0187751 A1 10/2003 Watson et al. 7,552,381 B2 6/2009 Barrus 2003/0195851 A1 10/2003 Ong 7,561,312 B1 7/2009 Proudfoot et al. 2003/0212527 A1 11/2003 Moore et al. 11/2003 Moore et al. 11/2003 Moore et al. 2003/0220835 A1 11/2003 Barrus, Jr. 7,574,407 B2 8/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 7,591,597 B2 9/2009 Weyl et al. 2003/0225547 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2004/0001217 A1 1/2004 Wu 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,580 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 1/2004 Choi et al. 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,561,312 B1 7/2009 Proudfoot et al. 2003/0212527 A1 11/2003 Moore et al. 7,574,407 B2 8/2009 Carro et al. 2003/0220835 A1 11/2003 Barnes, Jr. 7,587,412 B2 9/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 7,591,597 B2 9/2009 Pasqualini et al. 2003/0225547 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2004/0001217 A1 1/2004 Wu 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,580 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0015437 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | 7,552,07 | 75 B1 | | | | | | | | 7,574,407 B2 8/2009 Carro et al. 2003/0220835 A1 11/2003 Barnes, Jr. 7,587,412 B2 9/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 7,591,597 B2 9/2009 Pasqualini et al. 2003/0225547 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2004/0001217 A1 1/2004 Wu 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,580 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0015437 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,587,412 B2 9/2009 Weyl et al. 2003/0223637 A1 12/2003 Simske et al. 7,591,597 B2 9/2009 Pasqualini et al. 2003/0225547 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2004/0001217 A1 1/2004 Wu 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,580 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0015437 A1 1/2004 Krohn et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,591,597 B2 9/2009 Pasqualini et al. 2003/0225547 A1 12/2003 Paradies 7,593,605 B2 9/2009 King et al. 2004/0001217 A1 1/2004 Wu 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 7,599,580 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0015437 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,596,269 B2 9/2009 King et al. 2004/0006509 A1 1/2004 Mannik et al. 2004/0006740 A1 1/2004 Krohn et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0015437 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | 7,591,59 | 97 B2 | 9/2009 | Pasqualini et al. | | | | | | 7,599,580 B2 10/2009 King et al. 2004/0006740 A1 1/2004 Krohn et al. 7,599,844 B2 10/2009 King et al. 2004/0015437 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,599,844 B2 10/2009 King et al. 2004/0015437 A1 1/2004 Choi et al. 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,606,741 B2 10/2009 King et al. 2004/0023200 A1 2/2004 Blume
7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,613,634 B2 11/2009 Siegel et al. 2004/0028295 A1 2/2004 Allen et al. | | | | | | | | | | 7,616,840 B2 11/2009 Erol et al. 2004/0044627 A1 3/2004 Russell et al. | 7,613,63 | 84 B2 | 11/2009 | Siegel et al. | 2004/0028295 | A1 | 2/2004 | Allen et al. | | | 7,616,84 | 10 B2 | 11/2009 | Erol et al. | 2004/0044627 | A1 | 3/2004 | Russell et al. | # US 8,903,759 B2 Page 4 | (56) References Cited | | | 50712 A1 | | Hull et al. | | |-------------------------------------|-------------------|------------------------------------|----------|----------------------|--------------------|----------------------------------| | U.S. | PATENT | DOCUMENTS | | 73266 A1
94119 A1 | 8/2007 | Barnes, Jr.
Vinogradov et al. | | 0.0. | | | | 19940 A1 | 9/2007 | Mueller et al. | | 2004/0068483 A1 | | Sakurai et al. | | 28306 A1 | | Gannon et al. | | 2004/0080795 A1 | | Bean et al. | | 33806 A1
38076 A1 | 10/2007
10/2007 | Burstein et al. | | 2004/0098165 A1
2004/0139106 A1 | | Butikofer
Bachman et al. | | 79711 A1 | | King et al. | | 2004/0139107 A1 | | Bachman et al. | | 00142 A1 | 12/2007 | King et al. | | 2004/0139400 A1 | | Allam et al. | | 23550 A1 | 1/2008 | | | 2004/0181671 A1 | | Brundage et al. | | 46417 A1
53276 A1 | 2/2008
3/2008 | Jeffery et al.
Vincent et al. | | 2004/0181688 A1
2004/0186766 A1 | | Wittkotter
Fellenstein et al. | | 72134 A1 | | Balakrishnan et al. | | 2004/0189691 A1 | | Jojic et al. | | 82903 A1 | | McCurdy et al. | | 2004/0193488 A1 | | Khoo et al. | | 91954 A1
93460 A1 | | Morris et al.
Frantz et al. | | 2004/0204953 A1 | | Muir et al.
Erol et al. | | 26415 A1 | | Chaudhury et al. | | 2004/0205041 A1
2004/0205534 A1 | 10/2004 | | | 37971 A1 | | King et al. | | 2004/0236791 A1 | 11/2004 | | | 41117 A1 | | King et al. | | 2004/0250201 A1 | 12/2004 | | | 70674 A1
72365 A1 | | Ozden et al.
Ozden et al. | | 2004/0254795 A1
2004/0258274 A1 | | Fujii et al.
Brundage et al. | | 77825 A1 | | Dubinko et al. | | 2004/0268237 A1 | | Jones et al. | | 95664 A1 | | Maharajh et al. | | 2005/0022114 A1 | | Shanahan et al. | | 22166 A1 | | Hultgren et al. | | 2005/0033713 A1 | | Bala et al. | | 35093 A1
13172 A1 | 9/2008 | Cland
King et al. | | 2005/0091578 A1
2005/0097335 A1 | | Madan et al.
Shenoy et al. | | 12806 A1 | 1/2009 | Ricordi et al. | | 2005/0108001 A1 | | Aarskog | | 18990 A1 | 1/2009 | | | 2005/0108195 A1 | 5/2005 | Yalovsky et al. | | 77658 A1 | | King et al. | | 2005/0132281 A1 | | Pan et al. | | 47219 A1
92095 A1 | | Lin et al.
King et al. | | 2005/0136949 A1
2005/0139649 A1 | | Barnes, Jr.
Metcalf et al. | | 21848 A1 | | Yaroslavskiy et al. | | 2005/0154760 A1 | |
Bhakta et al. | | 77970 A1 | | King et al. | | 2005/0168437 A1 | | Carl et al. | | 82631 A1
83246 A1 | | King et al.
King et al. | | 2005/0205671 A1
2005/0214730 A1 | 9/2005
9/2005 | Gelsomini et al. | | 85538 A1 | | King et al. | | 2005/0214730 A1
2005/0220359 A1 | | Sun et al. | | 85620 A1 | | Schiller | | 2005/0222801 A1 | | Wulff et al. | | 78453 A1 | | King et al. | | 2005/0231746 A1 | | Parry et al. | | 18797 A1
19020 A1 | | King et al.
King et al. | | 2005/0243386 A1
2005/0251448 A1 | 11/2005 | Sheng
Gropper | | 19020 A1
19919 A1 | | King et al. | | 2005/0262058 A1 | | Chandrasekar et al. | 2011/002 | 22940 A1 | 1/2011 | King et al. | | 2005/0270358 A1 | | Kuchen et al. | | 25842 A1 | | King et al. | | 2005/0278314 A1 | | Buchheit | | 26838 A1
29443 A1 | | King et al.
King et al. | | 2005/0288954 A1
2005/0289054 A1 | 12/2005 | McCarthy et al. Silverbrook et al. | | 29504 A1 | | King et al. | | 2006/0011728 A1 | | Frantz et al. | | 33080 A1 | | King et al. | | 2006/0023945 A1 | | King et al. | | 35289 A1
35656 A1 | | King et al. | | 2006/0036462 A1
2006/0041484 A1 | | King et al.
King et al. | | 35662 A1 | 2/2011 | King et al.
King et al. | | 2006/0041484 A1
2006/0041538 A1 | | King et al. | | 43652 A1 | 2/2011 | King et al. | | 2006/0041590 A1 | 2/2006 | King et al. | | 14547 A1 | | King et al. | | 2006/0041605 A1 | | King et al. | | 72012 A1
09191 A1 | 8/2011 | Ah-Pine et al. | | 2006/0045374 A1
2006/0048046 A1 | | Kim et al.
Joshi et al. | | 27915 A1 | | Mandella et al. | | 2006/0053097 A1 | | King et al. | | 95842 A1 | 12/2011 | King et al. | | 2006/0075327 A1 | | Sriver et al. | | 99125 A1 | | King et al. | | 2006/0080314 A1*
2006/0081714 A1 | | Hubert et al 707/5
King et al. | 2012/00. | 38549 A1 | 2/2012 | Mandella et al. | | 2006/0081714 A1
2006/0085477 A1 | | Phillips et al. | | EOREIG | N DATE | NT DOCUMENTS | | 2006/0098900 A1 | 5/2006 | King et al. | | TOKER | JIN LALL: | INI DOCUMENTS | | 2006/0101285 A1 | | Chen et al. | EP | 105 | 4335 | 11/2000 | | 2006/0103893 A1
2006/0104515 A1 | | Azimi et al.
King et al. | EP | | 7305 | 3/2001 | | 2006/0119900 A1 | | King et al. | EP
GB | | 8659
5 033 | 6/2003
2/2002 | | 2006/0122983 A1 | 6/2006 | King et al. | JР | 06-28 | | 10/1994 | | 2006/0136629 A1 | | King et al. | JР | 06-28 | 9983 | 10/1994 | | 2006/0138219 A1
2006/0146169 A1 | | Brzezniak et al.
Segman | JP | 08-08 | | 4/1996 | | 2006/0173859 A1 | | Kim et al. | JP
JP | 10-20
11-21 | | 7/1998
8/1999 | | 2006/0195695 A1 | 8/2006 | | JP | 11-21 | | 8/1999 | | 2006/0200780 A1
2006/0224895 A1 | 9/2006
10/2006 | Iwema et al.
Mayer | JP | 2000-12 | 3114 | 4/2000 | | 2006/0224893 A1
2006/0239579 A1 | 10/2006 | • | JP
ID | 2000-19 | | 7/2000 | | 2006/0256371 A1 | | King et al. | JP
JP | 2000-21
2001-34 | | 8/2000
12/2001 | | 2006/0259783 A1 | 11/2006 | Work et al. | JP | 2001-54 | | 1/2004 | | 2006/0266839 A1 | | Yavid et al. | JP | 2004-05 | 0722 | 2/2004 | | 2006/0283952 A1 | 1/2006 | 2 | JP
JP | 2004-10 | | 4/2004
4/2004 | | 2007/0009245 A1 | 1/2007 | no | JI | 2004-11 | 0000 | 4/2004 | | (56) | References Cited | European Search Report for EP Application No. (
Mar. 23, 2009. | |----------|--|---| | | FOREIGN PATENT DOCUMENTS | European Search Report for EP Application No. (
Mar. 23, 2009. | | KR | 10-2000-0054339 9/2000 | European Search Report for EP Application No. (| | KR | 10-2000-0054268 10/2002 | Mar. 24, 2009. | | KR | 10-2004-0029895 4/2004 | European Search Report for EP Application No. (| | KR | 10-2007-0051217 5/2007 | Mar. 23, 2009. | | KR | 10-0741368 7/2007 | European Search Report for EP Application No. (| | KR | 10-0761912 9/2007 | Mar. 31, 2009. | | WO
WO | 94/19766 9/1994
98/03923 1/1998 | European Search Report for EP Application No. (| | wo | 00/56055 9/2000 | Mar. 23, 2009. | | wo | 01/03017 1/2001 | European Search Report for EP Application No. (| | WO | 01/24051 4/2001 | Dec. 10, 2010. | | WO | 01/33553 5/2001 | European Search Report for EP Application No. (| | WO | 02/061730 8/2002 | Dec. 10, 2010. | | WO | 2005/096750 10/2005 | Fehrenbacher, Katie, "Quick Frucall Could Save Y | | WO | 2005/096755 10/2005 | \$\$\$s)," Mobile, Startups, Web, http://gigaom.com/? | | WO | 2005/098596 10/2005 | action=share-this (Jul. 10, 2006). | | WO
WO | 2005/098597 10/2005 | Feldman, Susan, "The Answer Machine," The Mag | | WO | 2005/098598 10/2005
2005/098599 10/2005 | base Professional, 8(1):58 (Jan. 2000). | | wo | 2005/098600 10/2005 | Computer Hope, "Creating a link without an underlin | | wo | 2005/098601 10/2005 | evidenced by Internet Archive Wayback Machi | | WO | 2005/098602 10/2005 | archive.org/web/20010329222623/http://www.comp | | WO | 2005/098603 10/2005 | iss- ues/ch000074.htm, Mar. 29, 2001. | | WO | 2005/098604 10/2005 | Newman, et al. "Camworks: A Video-Based Tool fo | | WO | 2005/098605 10/2005 | ture from Paper Source Documents," Proceedings of | | WO | 2005/098606 10/2005 | International Conferenceon Multimedia Computing | | WO | 2005/098607 10/2005 | vol. 2, pp. 647-653 (1999). | | WO | 2005/098609 10/2005 | International Search Report for PCT/EP2007/00503 | | WO
WO | 2005/098610 10/2005
2005/101192 10/2005 | 2007. | | WO | 2005/101192 10/2005
2005/101193 10/2005 | International Search Report for PCT/EP2007/00782 | | wo | 2005/106643 11/2005 | 2009. | | WO | 2005/114380 12/2005 | International Search Report for PCT/EP2007/00807 | | WO | 2006/014727 2/2006 | 2008. | | WO | 2006/023715 3/2006 | International Search Report for PCT/US2005/01101 | | WO | 2006/023717 3/2006 | 2006. | | WO | 2006/023718 3/2006 | International Search Report for PCT/US2005/01101 | | WO | 2006/023806 3/2006 | 2007. | | WO | 2006/023937 3/2006 | International Search Report for PCT/US2005/01101 | | WO
WO | 2006/026188 3/2006
2006/029259 3/2006 | 2007. | | WO | 2006/036853 4/2006 | International Search Report for PCT/US2005/01101 | | wo | 2006/037011 4/2006 | 2006. | | WO | 2006/093971 9/2006 | International Search Report for PCT/US2005/01101 | | WO | 2006/124496 11/2006 | 2007. | | WO | 2007/141020 12/2007 | International Search Report for PCT/US2005/01102 | | WO | 2008/014255 1/2008 | 2007. | | WO | 2008/028674 3/2008 | International Search Report for PCT/US2005/01104 | | WO | 2008/031625 3/2008 | 2007. | | WO | 2008/072874 6/2008 | International Search Report for PCT/US2005/01104 | | WO
WO | 2010/096191 8/2010
2010/096192 8/2010 | 2007. | | WO | 2010/096192 8/2010 2010/096193 8/2010 | International Search Report for PCT/US2005/01108 | | WO | 2010/090193 8/2010 2010/105244 9/2010 | 2008. | | wo | 2010/105244 | International Search Report for PCT/US2005/01108 | | WO | 2010/105246 9/2010 | 2006. | | WO | 2010/108159 9/2010 | International Search Report for PCT/US2005/01108/
2008. | | Europe | OTHER PUBLICATIONS
ean Search Report for EP Application No. 05733819 of | International Search Report for PCT/US2005/01109 | Mar. 31, 2009. European Search Report for EP Application No. 05733851 dated Sep. 2, 2009. European Search Report for EP Application No. 05733915 dated Dec. 30, 2009. European Search Report for EP Application No. 05734996 dated Mar. 23, 2009. European Search Report for EP Application No. 05735008 dated Feb. 16, 2011. European Search Report for EP Application No. 05737714 dated European Search Report for EP Application No. 05734796 dated Apr. European Search Report for EP Application No. 05734947 dated Mar. 20, 2009. 05742065 dated 05745611 dated 05746428 dated 05746830 dated 05753019 dated 05789280 dated 05812073 dated 07813283 dated You Pennies (or /?p=6728&akst_ agazine for Data- ine in HTML:," as hine: http://web. nputerhope.com/ for Efficient Capof the 1999 IEEE ing and Systems, 38 dated Sep. 17, 324 dated May 25, 75 dated Oct. 10, 12 dated Sep. 29, 13 dated Oct. 19, 14 dated May 16, 015 dated Dec. 1, 16 dated May 29, 26 dated Jun. 11, 042 dated Sep. 10, 043 dated Sep. 20, 084 dated Aug. 8, 085 dated Sep. 14, 88 dated Aug. 29, 90 dated Sep. 27, International Search Report for PCT/US2005/011533 dated Jun. 4, International Search Report for PCT/US2005/011534 dated Nov. 9, International Search Report for PCT/US2005/012510 dated Jan. 6, 2011. International Search Report for PCT/US2005/013297 dated Aug. 14, 2007. International Search Report for PCT/US2005/013586 dated Aug. 7, 2009. International Search Report for PCT/US2005/017333 dated Jun. 4, International Search Report for PCT/U52005/025732 dated Dec. 5, #### (56) References Cited #### OTHER PUBLICATIONS International Search Report for PCT/U52005/029536 dated Apr. 19, 2007. International Search Report for PCT/U52005/029537 dated Sep. 28, 2007. International Search Report for PCT/US2005/029539 dated Sep. 29, 2008 International Search Report for PCT/U52005/029680 dated Jul. 13, 2010. International Search Report for PCT/U52005/030007 dated Mar. 11, 2008 International Search Report for PCT/US2005/029534 dated May 15, 2007. International Search Report for PCT/US2005/034319 dated Apr. 17, 2006. International Search Report for PCT/US2005/034734 dated Apr. 4, 2006 International Search Report for PCT/U52006/007108 dated Oct. 30, 2007 International Search Report for PCT/U52006/018198 dated Sep. 25, International Search Report for PCT/U52007/074214 dated Sep. 9, 2008 International Search Report for PCT/US2010/000497 dated Sep. 27, 2010. International Search Report for PCT/U52010/000498 dated Aug. 2, 2010. International Search Report for PCT/U52010/000499 dated Aug. 31, 2010 International Search Report for PCT/US2010/027254 dated Oct. 22, 2010 International Search Report for PCT/US2010/027255 dated Nov. 16, 2010. International Search Report for PCT/US2010/027256 dated Nov. 15, 2010. International Search Report for
PCT/US2010/028066 dated Oct. 26, 2010 Ghaly et al., SAMS Teach Yourself EJB in 21 days, Sams Publishing, 2002-2003 (pp. 1-2, 123 and 135). Sarre, et al. "HyperTex—a system for the automatic generation of Hypertext Textbooks from Linear Texts," Database and Expert Systems Applications, Proceedings of the International Conference, Abstract (1990). Solutions Software Corp., "Environmental Code of Federal Regulations (CFRs) including TSCA and SARA," Solutions Software Corp., Enterprise, FL Abstract (Apr. 1994). Non-Final Office Action for U.S. Appl. No. 11/004,637 dated Dec. 21, 2007. Final Office Action for U.S. Appl. No. 11/004,637 dated Oct. 2, 2008. Non-Final Office Action for U.S. Appl. No. 11/004,637 dated Apr. 2, 2009. Notice of Allowance for U.S. Appl. No. 11/004,637 dated Dec. 11, 2009 Non-Final Office Action for U.S. Appl. No. 11/096,704 dated Sep. 10, 2008. Notice of Allowance for U.S. Appl. No. 11/096,704 dated Mar. 11, 2009. Notice of Allowance for U.S. Appl. No. 11/096,704 dated Jun. 5, 2009. Non-Final Office Action for U.S. Appl. No. 11/097,089 dated Aug. $13,\,2008$. Final Office Action for U.S. Appl. No. 11/097,089 dated Mar. 17, 2009 Non-Final Office Action for U.S. Appl. No. 11/097,089 dated Dec. 23, 2009. Final Office Action for U.S. Appl. No. 11/097,089 dated Sep. 23, 2010. Non-Final Office Action for U.S. Appl. No. 11/097,093 dated Jul. 10, 2007 Non-Final Office Action for U.S. Appl. No. 11/097,103 dated Jun. 25, 2007 Non-Final Office Action for U.S. Appl. No. 11/097,103 dated Jan. 28, 2008 Non-Final Office Action for U.S. Appl. No. 11/097,103 dated Dec. 31, 2008 Notice of Allowance for U.S. Appl. No. 11/097,103 dated May 14, 2009. Final Office Action for U.S. Appl. No. 11/097,828 dated Feb. 4, 2009. Notice of Allowance for U.S. Appl. No. 11/097,828 dated Feb. 5, 2010 Final Office Action for U.S. Appl. No. 11/097,833 dated Jul. 7, 2009. Notice of Allowance for U.S. Appl. No. 11/097,833 dated Jan. 10, 2011. Non-Final Office Action for U.S. Appl. No. 11/097,835 dated Oct. 9, 2007. Non-Final Office Action for U.S. Appl. No. 11/097,835 dated Feb. 19, 2009. Final Office Action for U.S. Appl. No. 11/097,835 dated Dec. 29, 2009. Notice of Allowance for U.S. Appl. No. 11/097,835 dated Sep. 1, 2010. Final Office Action for U.S. Appl. No. 11/097,836 dated Jan. 6, 2009. Non-Final Office Action for U.S. Appl. No. 11/097,836 dated Jul. 30, 2009 Final Office Action for U.S. Appl. No. 11/097,836 dated May 13, 2010 Non-Final Office Action for U.S. Appl. No. 11/097,961 dated Sep. 15, 2008. Final Office Action for U.S. Appl. No. 11/097,961 dated Mar. 5, 2009 Final Office Action for U.S. Appl. No. 11/097,961 dated Dec. 9, 2009. Non-Final Office Action for U.S. Appl. No. 11/097,961 dated Jul. 9, 2010. Non-Final Office Action for U.S. Appl. No. 11/097,981 dated Jan. 16, 2009. Notice of Allowance for U.S. Appl. No. 11/097,981 dated Jul. 31, 2009. Final Office Action for U.S. Appl. No. 11/098,014 dated Jan. 23, 2000 Non-Final Office Action for U.S. Appl. No. 11/098,014 dated Jun. 30, 2009. Non-Final Office Action for U.S. Appl. No. 11/098,014 dated Nov. 3, 2010. Final Office Action for U.S. Appl. No. 11/098,014 dated Mar. 26, 2010. Notice of Allowance for U.S. Appl. No. 11/098,014 dated Mar. 16, 2011. Non-Final Office Action for U.S. Appl. No. 11/098,016 dated Apr. 24, Notice of Allowance for U.S. Appl. No. 11/098,016 dated Apr. 22, 2008. Non-Final Office Action for U.S. Appl. No. 11/098,038 dated Aug. 28, 2006. Final Office Action for U.S. Appl. No. 11/098,038 dated Jun. 7, 2007. Notice of Allowance for U.S. Appl. No. 11/098,038 dated Mar. 11, 2009. Notice of Allowance for U.S. Appl. No. 11/098,038 dated May 29, 2009. Non-Final Office Action for U.S. Appl. No. 11/098,042 dated Dec. 5, 2008. Notice of Allowance for U.S. Appl. No. 11/098,042 dated Apr. 13, 2000 Non-Final Office Action for U.S. Appl. No. 11/098,043 dated Jul. 23, 2007 Non-Final Office Action for U.S. Appl. No. 11/098,043 dated Dec. 23, 2008. Final Office Action for U.S. Appl. No. 11/098,043 dated Jul. 21, 2009. Non-Final Office Action for U.S. Appl. No. 11/110,353 dated Jul. 27, 2007. Final Office Action for U.S. Appl. No. 11/110,353 dated Jan. 6, 2009. #### (56)References Cited #### OTHER PUBLICATIONS Non-Final Office Action for U.S. Appl. No. 11/110,353 dated Sep. Notice of Allowance for U.S. Appl. No. 11/110,353 dated Dec. 2, Non-Final Office Action for U.S. Appl. No. 11/131,945 dated Jan. 8, Notice of Allowance for U.S. Appl. No. 11/131,945 dated Oct. 30, Non-Final Office Action for U.S. Appl. No. 11/185,908 dated Dec. 14, 2009 Final Office Action for U.S. Appl. No. 11/185,908 dated Jun. 28, Non-Final Office Action for U.S. Appl. No. 11/208,408 dated Oct. 7, Final Office Action for U.S. Appl. No. 11/208,408 dated May 11, Non-Final Office Action for U.S. Appl. No. 11/208,408 dated Apr. 23, Non-Final Office Action for U.S. Appl. No. 11/208,457 dated Oct. 9, Non-Final Office Action for U.S. Appl. No. 11/208,458 dated Mar. 21, 2007 Notice of Allowance for U.S. Appl. No. 11/208,458 dated Jun. 2, Non-Final Office Action for U.S. Appl. No. 11/208,461 dated Sep. 29, 2009 Non-Final Office Action for U.S. Appl. No. 11/208,461 dated Nov. 3, Notice of Allowance for U.S. Appl. No. 11/208,461 dated Mar. 15, Non-Final Office Action for U.S. Appl. No. 11/209,333 dated Apr. 29, 2010. Notice of Allowance for U.S. Appl. No. 11/210,260 dated Jan. 13, Non-Final Office Action for U.S. Appl. No. 11/236,330 dated Dec. 2, Notice of Allowance for U.S. Appl. No. 11/236,330 dated Jun. 22, Non-Final Office Action for U.S. Appl. No. 11/236,440 dated Jan. 22, Final Office Action for U.S. Appl. No. 11/236,440 dated Jul. 22, 2009 Non-Final Office Action for U.S. Appl. No. 11/365,983 dated Jan. 26, Final Office Action for U.S. Appl. No. 11/365,983 dated Sep. 14, Non-Final Office Action for U.S. Appl. No. 11/547,835 dated Dec. 29, 2010. Non-Final Office Action for U.S. Appl. No. 11/672,014 dated May 6, Notice of Allowance for U.S. Appl. No. 11/672,014 dated Feb. 28, Non-Final Office Action for U.S. Appl. No. 11/758,866 dated Jun. 14, Non-Final Office Action for U.S. Appl. No. 11/972,562 dated Apr. 21, Non-Final Office Action for U.S. Appl. No. 12/538,731 dated Jun. 28, Notice of Allowance for U.S. Appl. No. 12/538,731 dated Oct. 18, Non-Final Office Action for U.S. Appl. No. 12/541,891 dated Dec. 9, Non-Final Office Action for U.S. Appl. No. 12/542,816 dated Jun. 18, Notice of Allowance for U.S. Appl. No. 12/542,816 dated Jan. 3, 2011. Non-Final Office Action for U.S. Appl. No. 12/721,456 dated Mar. 1, D.P. Curtain, "Image Sensors—Capturing the Photograph," 2006, available at http://www.shortcourses.com/how/sensors/sensors.htm, (last visited Sep. 4, 2006). King et al., U.S. Appl. No. 11/432,731, filed May 11, 2006. King et al., U.S. Appl. No. 11/933,204, filed Oct. 21, 2007. King et al., U.S. Appl. No. 11/952,885, filed Dec. 7, 2007. King et al., U.S. Appl. No. 12/517,352, filed Jun. 2, 2009. King et al., U.S. Appl. No. 12/517,541, filed Jun. 3, 2009. King et al., U.S. Appl. No. 12/723,614, filed Mar. 12, 2010. King et al., U.S. Appl. No. 12/728,144, filed Mar. 19, 2010. King et al., U.S. Appl. No. 12/831,213, filed Jul. 6, 2010. King et al., U.S. Appl. No. 12/884,139, filed Sep. 6, 2010. King et al., U.S. Appl. No. 12/887,473, filed Sep. 21, 2010. King et al., U.S. Appl. No. 12/889,321, filed Sep. 23, 2010. King et al., U.S. Appl. No. 12/892,840, filed Sep. 28, 2010. King et al., U.S. Appl. No. 12/894,059, filed Sep. 29, 2010. King et al., U.S. Appl. No. 12/899,462, filed Oct. 6, 2010. King et al., U.S. Appl. No. 12/902,081, filed Oct. 11, 2010. King et al., U.S. Appl. No. 12/904,064, filed Oct. 13, 2010. King et al., U.S. Appl. No. 12/961,407, filed Dec. 6, 2010. King et al., U.S. Appl. No. 12/964,662, filed Dec. 9, 2010. King et al., U.S. Appl. No. 13/031,316, filed Feb. 21, 2011. Brickman et al., "Word Autocorrelation Redundancy Match (WARM) Technology," IBM J. Res. Develop., 26 (6):681-686 (Nov. Casey et al., "An Autonomous Reading Machine," IEEE Transactions on Computers, vol. C-17, No. 5, pp. 492-503 (May 1968). Non-Final Office Action for U.S. Appl. No. 11/097,089 dated Apr. 7, Notice of Allowance for for U.S. Appl. No. 12/542,816 dated Apr. 27, 2011. Non-Final Office Action for U.S. Appl. No. 12/889,321 dated Mar. 31, 2011. Non-Final Office Action for U.S. Appl. No. 12/904,064 dated Mar. Bagley, et al., Editing Images of Text, Communications of the ACM. 37(12):63-72 (Dec. 1994) downloaded from Dialog Web on the Internet on Jun. 18, 2011 (14 pages). Brin et al., "The Anatomy of a Large-Scale Hypertextual Web Search Engine," Computer Networks and ISDN Systems, vol. 30, Issue 1-7, Apr. 1, 1998, pp. 1-22. Liddy, Elizabeth, "How a Search Engine Works," InfoToday.com, vol. 9, No. 5, May 2001, pp. 1-7. King et al., U.S. Appl. No. 13/186,908, filed Jul. 20, 2011, 118 pages. King et al., U.S. Appl. No. 13/253,632, filed Oct. 5, 2011, 101 pages. Bahl, et al., "Font Independent Character Recognition by Cryptanalysis," IBM Technical Disclosure Bulletin, vol. 24, No. 3, pp. 1588-1589 (Aug. 1, 1981). Ramesh, R.S. et al., "An Automated Approach to Solve Simple Substitution Ciphers," Cryptologia, vol. 17. No. 2, pp. 202-218 (1993). Nagy et al., "Decoding Substitution Ciphers by Means of Word Matching with Application to OCR," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, No. 5, pp. 710-715 (Sep. 1, 1987). Wood et al., "Implementing a faster string search algorithm in Ada," CM Sigada Ada Letters, vol. 8, No. 3, pp. 87-97 (Apr. 1, 1988). Garain et al., "Compression of Scan-Digitized Indian Language Printed Text: A Soft Pattern Matching Technique," Proceedings of the 2003 ACM Symposium on Document Engineering, pp. 185-192 (Jan. King et al., U.S. Appl. No. 13/614,770, filed Sep. 13, 2013, 102 pages King et al., U.S. Appl. No. 13/614,473, filed Sep. 13, 2013, 120 King et al., U.S. Appl. No. 13/615,517, filed Sep. 13, 2013, 114 pages. ^{*} cited by examiner *FIG.
3* FIG. 4 FIG. 5 FIG. 6 FIG. 7 **FIG.** 8 #### DETERMINING ACTIONS INVOLVING CAPTURED INFORMATION AND ELECTRONIC CONTENT ASSOCIATED WITH RENDERED DOCUMENTS ### CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation application of U.S. application Ser. No. 11/972,562, which is a continuation application of U.S. application Ser. No. 11/097,093, filed Apr. 1, 2005, which is a Continuation-In-Part of U.S. patent application Ser. No. 11/004,637 filed on Dec. 3, 2004, each of which is hereby incorporated by reference in its entirety. This application is related to, and incorporates by reference 15 in their entirety, the following U.S. Patent Applications, filed concurrently herewith: U.S. patent application Ser. No. 11/097,961, entitled METHODS AND SYSTEMS FOR INI-TIATING APPLICATION PROCESSES BY DATA CAP-TURE FROM RENDERED DOCUMENTS, U.S. patent 20 application Ser. No. 11/098,038, entitled CONTENT ACCESS WITH HANDHELD DOCUMENT DATA CAP-TURE DEVICES, U.S. patent application Ser. No. 11/098, 014, entitled SEARCH ENGINES AND SYSTEMS WITH HANDHELD DOCUMENT DATA CAPTURE DEVICES, 25 U.S. patent application Ser. No. 11/097,103, entitled TRIG-GERING ACTIONS IN RESPONSE TO OPTICALLY OR ACOUSTICALLY CAPTURING KEYWORDS FROM A RENDERED DOCUMENT, U.S. patent application Ser. No. 11/098,043, entitled SEARCHING AND ACCESSING 30 DOCUMENTS ON PRIVATE NETWORKS FOR USE WITH CAPTURES FROM RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/097,981, entitled INFOR-MATION GATHERING SYSTEM AND METHOD, U.S. patent application Ser. No. 11/097,089, entitled DOCU- 35 MENT ENHANCEMENT SYSTEM AND METHOD, U.S. patent application Ser. No. 11/097,835, entitled PUBLISH-ING TECHNIQUES FOR ADDING VALUE TO A REN-DERED DOCUMENT, U.S. patent application Ser. No. 11/098,016, entitled ARCHIVE OF TEXT CAPTURES 40 FROM RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/097,828, entitled ADDING INFORMA-TION OR FUNCTIONALITY TO A RENDERED DOCU-MENT VIA ASSOCIATION WITH AN ELECTRONIC COUNTERPART, U.S. patent application Ser. No. 11/097, 45 833, entitled AGGREGATE ANALYSIS OF TEXT CAP-TURES PERFORMED BY MULTIPLE USERS FROM RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/097,836, entitled ESTABLISHING AN INTERAC-TIVE ENVIRONMENT FOR RENDERED DOCUMENTS, 50 U.S. patent application Ser. No. 11/098,042, entitled DATA CAPTURE FROM RENDERED DOCUMENTS USING HANDHELD DEVICE, and U.S. patent application Ser. No. 11/096,704, entitled CAPTURING TEXT FROM REN-DERED DOCUMENTS USING SUPPLEMENTAL 55 INFORMATION. This application incorporates by reference in their entirety, the following U.S. Provisional Patent Applications: Application No. 60/559,226 filed on Apr. 1, 2004, Application No. 60/558,893 filed on Apr. 1, 2004, Application No. 60/558,866 filed on Apr. 1, 2004, Application No. 60/558,867 filed on Apr. 1, 2004, Application No. 60/559,278 filed on Apr. 1, 2004, Application No. 60/559,279 filed on Apr. 1, 2004, Application No. 60/559,265 filed on Apr. 1, 2004, Application No. 60/559,277 filed on Apr. 1, 2004, Application No. 60/558,969 filed on Apr. 1, 2004, Application No. 60/558,969 filed on Apr. 1, 2004, Application No. 60/558,760 filed on Apr. 1, 2004, Application No. 60/558,760 filed on Apr. 1, 2004, Application No. 60/558,760 filed on 2 Apr. 1, 2004, Application No. 60/558,717 filed on Apr. 1, 2004, Application No. 60/558,499 filed on Apr. 1, 2004, Application No. 60/558,370 filed on Apr. 1, 2004, Application No. 60/558,789 filed on Apr. 1, 2004, Application No. 60/558,791 filed on Apr. 1, 2004, Application No. 60/558,527 filed on Apr. 1, 2004, Application No. 60/559,125 filed on Apr. 2, 2004, Application No. 60/558,909 filed on Apr. 2, 2004, Application No. 60/559,033 filed on Apr. 2, 2004, Application No. 60/559,127 filed on Apr. 2, 2004, Application No. 60/559,087 filed on Apr. 2, 2004, Application No. 60/559,131 filed on Apr. 2, 2004, Application No. 60/559,766 filed on Apr. 6, 2004, Application No. 60/561,768 filed on Apr. 12, 2004, Application No. 60/563,520 filed on Apr. 19, 2004, Application No. 60/563,485 filed on Apr. 19, 2004, Application No. 60/564,688 filed on Apr. 23, 2004, Application No. 60/564,846 filed on Apr. 23, 2004, Application No. 60/566,667, filed on Apr. 30, 2004, Application No. 60/571, 381 filed on May 14, 2004, Application No. 60/571,560 filed on May 14, 2004, Application No. 60/571,715 filed on May 17, 2004, Application No. 60/589,203 filed on Jul. 19, 2004, Application No. 60/589,201 filed on Jul. 19, 2004, Application No. 60/589,202 filed on Jul. 19, 2004, Application No. 60/598,821 filed on Aug. 2, 2004, Application No. 60/602, 956 filed on Aug. 18, 2004, Application No. 60/602,925 filed on Aug. 18, 2004, Application No. 60/602,947 filed on Aug. 18, 2004, Application No. 60/602,897 filed on Aug. 18, 2004, Application No. 60/602,896 filed on Aug. 18, 2004, Application No. 60/602,930 filed on Aug. 18, 2004, Application No. 60/602,898 filed on Aug. 18, 2004, Application No. 60/603, 466 filed on Aug. 19, 2004, Application No. 60/603,082 filed on Aug. 19, 2004, Application No. 60/603,081 filed on Aug. 19, 2004, Application No. 60/603,498 filed on Aug. 20, 2004, Application No. 60/603,358 filed on Aug. 20, 2004, Application No. 60/604,103 filed on Aug. 23, 2004, Application No. 60/604,098 filed on Aug. 23, 2004, Application No. 60/604, 100 filed on Aug. 23, 2004, Application No. 60/604,102 filed on Aug. 23, 2004, Application No. 60/605,229 filed on Aug. 27, 2004, Application No. 60/605,105 filed on Aug. 27, 2004, Application No. 60/613,243 filed on Sep. 27, 2004, Application No. 60/613,628 filed on Sep. 27, 2004, Application No. 60/613,632 filed on Sep. 27, 2004, Application No. 60/613, 589 filed on Sep. 27, 2004, Application No. 60/613,242 filed on Sep. 27, 2004, Application No. 60/613,602 filed on Sep. 27, 2004, Application No. 60/613,340 filed on Sep. 27, 2004, Application No. 60/613,634 filed on Sep. 27, 2004, Application No. 60/613,461 filed on Sep. 27, 2004, Application No. 60/613,455 filed on Sep. 27, 2004, Application No. 60/613, 460 filed on Sep. 27, 2004, Application No. 60/613,400 filed on Sep. 27, 2004, Application No. 60/613,456 filed on Sep. 27, 2004, Application No. 60/613,341 filed on Sep. 27, 2004, Application No. 60/613,361 filed on Sep. 27, 2004, Application No. 60/613,454 filed on Sep. 27, 2004, Application No. 60/613,339 filed on Sep. 27, 2004, Application No. 60/613, 633 filed on Sep. 27, 2004, Application No. 60/615,378 filed on Oct. 1, 2004, Application No. 60/615,112 filed on Oct. 1, 2004, Application No. 60/615,538 filed on Oct. 1, 2004, Application No. 60/617,122 filed on Oct. 7, 2004, Application No. 60/622,906 filed on Oct. 28, 2004, Application No. 60/633,452 filed on Dec. 6, 2004, Application No. 60/633, 678 filed on Dec. 6, 2004, Application No. 60/633,486 filed on Dec. 6, 2004, Application No. 60/633,453 filed on Dec. 6, 2004, Application No. 60/634,627 filed on Dec. 9, 2004, Application No. 60/634,739 filed on Dec. 9, 2004, Application No. 60/647,684 filed on Jan. 26, 2005, Application No. 60/648,746 filed on Jan. 31, 2005, Application No. 60/653, 372 filed on Feb. 15, 2005, Application No. 60/653,663 filed on Feb. 16, 2005, Application No. 60/653,669 filed on Feb. 16, 2005, Application No. 60/653,899 filed on Feb. 16, 2005, Application No. 60/653,679 filed on Feb. 16, 2005, Application No. 60/653,847 filed on Feb. 16, 2005, Application No. 60/654,379 filed on Feb. 17, 2005, Application No. 60/654, 368 filed on Feb. 18, 2005, Application No. 60/654,326 filed on Feb. 18, 2005, Application No. 60/654,196 filed on Feb. 18, 2005, Application No. 60/655,279 filed on Feb. 22, 2005, Application No. 60/655,980 filed on Feb. 22, 2005, Application No. 60/655,987 filed on Feb. 22, 2005, Application No. 60/655,697 filed on Feb. 22, 2005, Application No. 60/655, 281 filed on Feb. 22, 2005, and Application No. 60/657,309 filed on Feb. 28, 2005. #### TECHNICAL FIELD The described technology is directed to the field of document processing. This disclosure relates generally to handheld document data capture devices and manners of interacting with rendered documents using handheld document data capture devices. #### BACKGROUND Paper documents have an enduring appeal, as can be seen by the proliferation of paper documents in the computer age. ²⁵ It has never been easier to print and publish paper documents than it is today. Paper documents prevail even though electronic documents are easier to duplicate, transmit, search and edit. Given the popularity of paper documents and the advantages of electronic documents, it would be useful to combine the benefits of both. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a data flow diagram that illustrates the flow of information in one embodiment of the core system. FIG. 2 is a component diagram of components included in a typical implementation of the system in the context of a typical operating environment. FIG. 3 is a block diagram of an embodiment of a scanner. FIG. 4 is a block diagram of an embodiment of a system to support document interaction. FIG. 5 is a block diagram of an embodiment of a technique to map capture information to actions. FIG. **6** is a flow chart of an embodiment of a process to determine automatic and selectable actions based upon capture information. FIG. 7 is a block diagram of an embodiment of a technique to map information from multiple sources to actions. FIG. 8 is a block diagram of an embodiment of a technique to map capture information from a document hierarchy to actions. #### DETAILED DESCRIPTION #### Overview In the system described above, users can subscribe to various services offered by a service provider. These services 60 support the use of handheld document data capture devices. Such services can include communication, transaction intermediation (e.g., providing payment to a vendor for purchases made by the subscriber with the handheld device), search, data processing (e.g., network assisted OCR,
location determination, etc.), data archiving (e.g., life library), and many others. For example, a service provider might provide com- 4 munication and search functions for a mobile phone so that it can be used to capture information from a document and wirelessly communicate the information to a search engine. In one aspect, information is captured from a rendered document, and markup data associated with the rendered document is applied to at least in part determine actions and/or behaviors available to a user of the handheld document data capture device. In some embodiments, electronic counterparts of the rendered document may be located. Markup data can be stored, among other locations, in an electronic counterpart to a rendered document, in a separate document corresponding to a rendered document, in a database, in a file of metadata associated with one or more rendered documents. The markup data may include information associated with the 15 rendered document and/or its electronic counterpart. The markup data may be applied to determine actions to take on and/or involving the captured information. Markup data may be applied to determine actions and/or behaviors available to a user of the handheld document data capture device and/or actions using and/or involving the electronic counterpart. Markup data may be applied in a hierarchical manner to determine actions and/or behaviors available to a user of the handheld document data capture device and/or actions using and/or involving the electronic counterpart. #### PART I #### Introduction #### 30 1. Nature of the System For every paper document that has an electronic counterpart, there exists a discrete amount of information in the paper document that can identify the electronic counterpart. In some embodiments, the system uses a sample of text captured from a paper document, for example using a handheld scanner, to identify and locate an electronic counterpart of the document. In most cases, the amount of text needed by the facility is very small in that a few words of text from a document can often function as an identifier for the paper document and as a link to its electronic counterpart. In addition, the system may use those few words to identify not only the document, but also a location within the document. Thus, paper documents and their digital counterparts can be associated in many useful ways using the system discussed 45 herein. #### 1.1. A Quick Overview of the Future Once the system has associated a piece of text in a paper document with a particular digital entity has been established, the system is able to build a huge amount of functionality on that association. It is increasingly the case that most paper documents have an electronic counterpart that is accessible on the World Wide Web or from some other online database or document corpus, or can be made accessible, such as in response to the payment of a fee or subscription. At the simplest level, then, when a user scans a few words in a paper document, the system can retrieve that electronic document or some part of it, or display it, email it to somebody, purchase it, print it or post it to a web page. As additional examples, scanning a few words of a book that a person is reading over breakfast could cause the audiobook version in the person's car to begin reading from that point when s/he starts driving to work, or scanning the serial number on a printer cartridge could begin the process of ordering a replacement. The system implements these and many other examples of "paper/digital integration" without requiring changes to the current processes of writing, printing and publishing docu- ments, giving such conventional rendered documents a whole new layer of digital functionality. #### 1.2. Terminology A typical use of the system begins with using an optical scanner to scan text from a paper document, but it is important 5 to note that other methods of capture from other types of document are equally applicable. The system is therefore sometimes described as scanning or capturing text from a rendered document, where those terms are defined as follows: A rendered document is a printed document or a document 10 shown on a display or monitor. It is a document that is perceptible to a human, whether in permanent form or on a transitory display. Scanning or capturing is the process of systematic examination to obtain information from a rendered document. The process may involve optical capture using a scanner or camera (for example a camera in a cellphone), or it may involve reading aloud from the document into an audio capture device or typing it on a keypad or keyboard. For more examples, see Section 15. #### 2. Introduction to the System This section describes some of the devices, processes and systems that constitute a system for paper/digital integration. In various embodiments, the system builds a wide variety of services and applications on this underlying core that provides the basic functionality. #### 2.1. The Processes FIG. 1 is a data flow diagram that illustrates the flow of information in one embodiment of the core system. Other embodiments may not use all of the stages or elements illustrated here, while some will use many more. Text from a rendered document is captured 100, typically in optical form by an optical scanner or audio form by a voice recorder, and this image or sound data is then processed 102, for example to remove artifacts of the capture process or to 35 improve the signal-to-noise ratio. A recognition process 104 such as OCR, speech recognition, or autocorrelation then converts the data into a signature, comprised in some embodiments of text, text offsets, or other symbols. Alternatively, the system performs an alternate form of extracting document 40 signature from the rendered document. The signature represents a set of possible text transcriptions in some embodiments. This process may be influenced by feedback from other stages, for example, if the search process and context analysis 110 have identified some candidate documents from 45 which the capture may originate, thus narrowing the possible interpretations of the original capture. A post-processing 106 stage may take the output of the recognition process and filter it or perform such other operations upon it as may be useful. Depending upon the embodiment implemented, it may be possible at this stage to deduce some direct actions 107 to be taken immediately without reference to the later stages, such as where a phrase or symbol has been captured which contains sufficient information in itself to convey the user's intent. In these cases no digital 55 counterpart document need be referenced, or even known to the system. Typically, however, the next stage will be to construct a query **108** or a set of queries for use in searching. Some aspects of the query construction may depend on the search 60 process used and so cannot be performed until the next stage, but there will typically be some operations, such as the removal of obviously misrecognized or irrelevant characters, which can be performed in advance. The query or queries are then passed to the search and 65 context analysis stage 110. Here, the system optionally attempts to identify the document from which the original 6 data was captured. To do so, the system typically uses search indices and search engines 112, knowledge about the user 114 and knowledge about the user's context or the context in which the capture, occurred 116. Search engine 112 may employ and/or index information specifically about rendered documents, about their digital counterpart documents, and about documents that have a web (internet) presence). It may write to, as well as read from, many of these sources and, as has been mentioned, it may feed information into other stages of the process, for example by giving the recognition system 104 information about the language, font, rendering and likely next words based on its knowledge of the candidate documents. In some circumstances the next stage will be to retrieve 120 a copy of the document or documents that have been identified. The sources of the documents 124 may be directly accessible, for example from a local filing system or database or a web server, or they may need to be contacted via some access service 122 which might enforce authentication, security or payment or may provide other services such as conversion of the document into a desired format. Applications of the system may take advantage of the association of extra functionality or data with part or all of a document. For example, advertising applications discussed in Section 10.4 may use an association of particular advertising messages or subjects with portions of a document. This extra associated functionality or data can be thought of as one or more overlays on the document, and is referred to herein as "markup." The next stage of the process 130, then, is to identify any markup relevant to the captured data. Such markup may be provided by the user, the originator, or publisher of the document, or some other party, and may be directly accessible from some source 132 or may be generated by some service 134. In various embodiments, markup can be associated with, and apply to, a rendered document and/or the digital counterpart to a rendered document, or to groups of either or both of these documents. Lastly, as a result of the earlier stages, some actions may be taken 140. These may be default actions such as simply recording the information found, they may be dependent on the data or document, or they may be derived from the markup analysis. Sometimes the action will simply be to pass the data to another system. In some cases the various possible actions appropriate to a capture at a specific point in a rendered document will be presented to the user as a menu on an associated display, for example on a local display 332, on a computer display 212 or a
mobile phone or PDA display 216. If the user doesn't respond to the menu, the default actions can be taken. #### 2.2. The Components FIG. 2 is a component diagram of components included in a typical implementation of the system in the context of a typical operating environment. As illustrated, the operating environment includes one or more optical scanning capture devices 202 or voice capture devices 204. In some embodiments, the same device performs both functions. Each capture device is able to communicate with other parts of the system such as a computer 212 and a mobile station 216 (e.g., a mobile phone or PDA) using either a direct wired or wireless connection, or through the network 220, with which it can communicate using a wired or wireless connection, the latter typically involving a wireless base station 214. In some embodiments, the capture device is integrated in the mobile station, and optionally shares some of the audio and/or optical components used in the device for voice communications and picture-taking. Computer 212 may include a memory containing computer executable instructions for processing an order from scanning devices 202 and 204. As an example, an order can include an identifier (such as a serial number of the scanning device 202/204 or an identifier that partially or uniquely identifies the user of the scanner), scanning context information (e.g., time of scan, location of scan, etc.) and/or scanned information (such as a text string) that is used to uniquely identify the document being scanned. In alternative embodiments, the operating environment may include more or less components. Also available on the network 220 are search engines 232, document sources 234, user account services 236, markup services 238 and other network services 239. The network 220 may be a corporate intranet, the public Internet, a mobile phone network or some other network, or any interconnection of the above. Regardless of the manner by which the devices are coupled to each other, they may all may be operable in accordance with well-known commercial transaction and communication protocols (e.g., Internet Protocol (IP)). In various embodiments, the functions and capabilities of scanning device 202, computer 212, and mobile station 216 may be wholly or partially integrated into one device. Thus, the terms scanning device, computer, and mobile station can refer to the 25 same device depending upon whether the device incorporates functions or capabilities of the scanning device 202, computer 212 and mobile station 216. In addition, some or all of the functions of the search engines 232, document sources 234, user account services 236, markup services 238 and 30 other network services 239 may be implemented on any of the devices and/or other devices not shown. #### 2.3. The Capture Device As described above, the capture device may capture text using an optical scanner that captures image data from the 35 rendered document, or using an audio recording device that captures a user's spoken reading of the text, or other methods. Some embodiments of the capture device may also capture images, graphical symbols and icons, etc., including machine readable codes such as barcodes. The device may be exceedingly simple, consisting of little more than the transducer, some storage, and a data interface, relying on other functionality residing elsewhere in the system, or it may be a more full-featured device. For illustration, this section describes a device based around an optical scanner and with a reasonable 45 number of features. Scanners are well known devices that capture and digitize images. An offshoot of the photocopier industry, the first scanners were relatively large devices that captured an entire document page at once. Recently, portable optical scanners 50 have been introduced in convenient form factors, such as a pen-shaped handheld device. In some embodiments, the portable scanner is used to scan text, graphics, or symbols from rendered documents. The portable scanner has a scanning element that captures text, 55 symbols, graphics, etc, from rendered documents. In addition to documents that have been printed on paper, in some embodiments, rendered documents include documents that have been displayed on a screen such as a CRT monitor or LCD display. FIG. 3 is a block diagram of an embodiment of a scanner 302. The scanner 302 comprises an optical scanning head 308 to scan information from rendered documents and convert it to machine-compatible data, and an optical path 306, typically a lens, an aperture or an image conduit to convey the 65 image from the rendered document to the scanning head. The scanning head 308 may incorporate a Charge-Coupled 8 Device (CCD), a Complementary Metal Oxide Semiconductor (CMOS) imaging device, or an optical sensor of another type. A microphone 310 and associated circuitry convert the sound of the environment (including spoken words) into machine-compatible signals, and other input facilities exist in the form of buttons, scroll-wheels or other tactile sensors such as touch-pads 314. Feedback to the user is possible through a visual display or indicator lights **332**, through a loudspeaker or other audio transducer **334** and through a vibrate module **336**. The scanner 302 comprises logic 326 to interact with the various other components, possibly processing the received signals into different formats and/or interpretations. Logic 326 may be operable to read and write data and program instructions stored in associated storage 330 such as RAM, ROM, flash, or other suitable memory. It may read a time signal from the clock unit 328. The scanner 302 also includes an interface 316 to communicate scanned information and other signals to a network and/or an associated computing device. In some embodiments, the scanner 302 may have an on-board power supply 332. In other embodiments, the scanner 302 may be powered from a tethered connection to another device, such as a Universal Serial Bus (USB) connection. As an example of one use of scanner 302, a reader may scan some text from a newspaper article with scanner 302. The text is scanned as a bit-mapped image via the scanning head 308. Logic 326 causes the bit-mapped image to be stored in memory 330 with an associated time-stamp read from the clock unit 328. Logic 326 may also perform optical character recognition (OCR) or other post-scan processing on the bitmapped image to convert it to text. Logic 326 may optionally extract a signature from the image, for example by performing a convolution-like process to locate repeating occurrences of characters, symbols or objects, and determine the distance or number of other characters, symbols, or objects between these repeated elements. The reader may then upload the bit-mapped image (or text or other signature, if post-scan processing has been performed by logic 326) to an associated computer via interface 316. As an example of another use of scanner 302, a reader may capture some text from an article as an audio file by using microphone 310 as an acoustic capture port. Logic 326 causes audio file to be stored in memory 328. Logic 326 may also perform voice recognition or other post-scan processing on the audio file to convert it to text. As above, the reader may then upload the audio file (or text produced by post-scan processing performed by logic 326) to an associated computer via interface 316. #### PART II #### Overview of the Areas of the Core System As paper-digital integration becomes more common, there are many aspects of existing technologies that can be changed to take better advantage of this integration, or to enable it to be implemented more effectively. This section highlights some of those issues. #### 3. Search Searching a corpus of documents, even so large a corpus as the World Wide Web, has become commonplace for ordinary users, who use a keyboard to construct a search query which is sent to a search engine. This section and the next discuss the aspects of both the construction of a query originated by a capture from a rendered document, and the search engine that handles such a query. #### 3.1. Scan/Speak/Type as Search Query Use of the described system typically starts with a few 5 words being captured from a rendered document using any of several methods, including those mentioned in Section 1.2 above. Where the input needs some interpretation to convert it to text, for example in the case of OCR or speech input, there may be end-to-end feedback in the system so that the 10 document corpus can be used to enhance the recognition process. End-to-end feedback can be applied by performing an approximation of the recognition or interpretation, identifying a set of one or more candidate matching documents, and then using information from the possible matches in the candidate documents to further refine or restrict the recognition or interpretation. Candidate documents can be weighted according to their probable relevance (for example, based on then number of other users who have scanned in these documents, or their popularity on the Internet), and these weights 20 can be applied in this iterative recognition process. #### 3.2. Short Phrase Searching Because the selective power of a search query based on a few words is greatly enhanced when the relative positions of these words are known, only a small amount of text need be 25 captured for the system to identify the text's location in a corpus. Most commonly, the input text will be a contiguous sequence of words, such as a short phrase. 3.2.1. Finding Document and Location in Document from Short Capture In addition to locating the document from which a phrase originates, the system can identify the location in that document and can take action based on this knowledge. #### 3.2.2. Other Methods of Finding Location The system may also employ other methods of discovering 35 the document and location, such as by using
watermarks or other special markings on the rendered document. #### 3.3. Incorporation of Other Factors in Search Query In addition to the captured text, other factors (i.e., information about user identity, profile, and context) may form part of 40 the search query, such as the time of the capture, the identity and geographical location of the user, knowledge of the user's habits and recent activities, etc. The document identity and other information related to previous captures, especially if they were quite recent, may 45 form part of a search query. The identity of the user may be determined from a unique identifier associated with a capturing device, and/or biometric or other supplemental information (speech patterns, fingerprints, etc.). 3.4. Knowledge of Nature of Unreliability in Search Query (OCR Errors Etc) The search query can be constructed taking into account the types of errors likely to occur in the particular capture method used. One example of this is an indication of suspected errors in the recognition of specific characters; in this instance a search engine may treat these characters as wildcards, or assign them a lower priority. 3.5. Local Caching of Index for Performance/Offline Use Sometimes the capturing device may not be in communication with the search engine or corpus at the time of the data capture. For this reason, information helpful to the offline use of the device may be downloaded to the device in advance, or to some entity with which the device can communicate. In some cases, all or a substantial part of an index associated 65 with a corpus may be downloaded. This topic is discussed further in Section 15.3. 10 3.6. Queries, in Whatever Form, May be Recorded and Acted on Later If there are likely to be delays or cost associated with communicating a query or receiving the results, this preloaded information can improve the performance of the local device, reduce communication costs, and provide helpful and timely user feedback. In the situation where no communication is available (the local device is "offline"), the queries may be saved and transmitted to the rest of the system at such a time as communication is restored. In these cases it may be important to transmit a timestamp with each query. The time of the capture can be a significant factor in the interpretation of the query. For example, Section 13.1 discusses the importance of the time of capture in relation to earlier captures. It is important to note that the time of capture will not always be the same as the time that the query is executed. #### 3.7. Parallel Searching For performance reasons, multiple queries may be launched in response to a single capture, either in sequence or in parallel. Several queries may be sent in response to a single capture, for example as new words are added to the capture, or to query multiple search engines in parallel. For example, in some embodiments, the system sends queries to a special index for the current document, to a search engine on a local machine, to a search engine on the corporate network, and to remote search engines on the Internet. The results of particular searches may be given higher priority than those from others. The response to a given query may indicate that other pending queries are superfluous; these may be cancelled before completion. #### 4. Paper and Search Engines Often it is desirable for a search engine that handles traditional online queries also to handle those originating from rendered documents. Conventional search engines may be enhanced or modified in a number of ways to make them more suitable for use with the described system. The search engine and/or other components of the system may create and maintain indices that have different or extra features. The system may modify an incoming paper-originated query or change the way the query is handled in the resulting search, thus distinguishing these paper-originated queries from those coming from queries typed into web browsers and other sources. And the system may take different actions or offer different options when the results are returned by the searches originated from paper as compared to those from other sources. Each of these approaches is discussed below. #### 4.1. Indexing Often, the same index can be searched using either paperoriginated or traditional queries, but the index may be enhanced for use in the current system in a variety of ways. #### 4.1.1. Knowledge about the Paper Form Extra fields can be added to such an index that will help in the case of a paper-based search. Index Entry Indicating Document Availability in Paper Form The first example is a field indicating that the document is known to exist or be distributed in paper form. The system may give such documents higher priority if the query comes from paper. #### Knowledge of Popularity Paper Form In this example statistical data concerning the popularity of paper documents (and, optionally, concerning sub-regions within these documents)—for example the amount of scanning activity, circulation numbers provided by the publisher or other sources, etc-is used to give such documents higher priority, to boost the priority of digital counterpart documents (for example, for browser-based queries or web searches), Knowledge of Rendered Format Another important example may be recording information about the layout of a specific rendering of a document. For a particular edition of a book, for example, the index may include information about where the line breaks and page breaks occur, which fonts were used, any unusual capi- 10 talization. The index may also include information about the proximity of other items on the page, such as images, text boxes, tables and advertisements. Use of Semantic Information in Original Lastly, semantic information that can be deduced from the source markup but is not apparent in the paper document, such as the fact that a particular piece of text refers to an item offered for sale, or that a certain paragraph contains program code, may also be recorded in the index. 4.1.2. Indexing in the Knowledge of the Capture Method A second factor that may modify the nature of the index is the knowledge of the type of capture likely to be used. A search initiated by an optical scan may benefit if the index takes into account characters that are easily confused in the 25 engine in the search query (Section 3.3), and may possibly be OCR process, or includes some knowledge of the fonts used in the document. Similarly, if the query is from speech recognition, an index based on similar-sounding phonemes may be much more efficiently searched. An additional factor that may affect the use of the index in the described model is the 30 importance of iterative feedback during the recognition process. If the search engine is able to provide feedback from the index as the text is being captured, it can greatly increase the accuracy of the capture. Indexing Using Offsets If the index is likely to be searched using the offset-based/ autocorrelation OCR methods described in Section 9, in some embodiments, the system stores the appropriate offset or signature information in an index. #### 4.1.3. Multiple Indices Lastly, in the described system, it may be common to conduct searches on many indices. Indices may be maintained on several machines on a corporate network. Partial indices may be downloaded to the capture device, or to a machine close to the capture device. Separate indices may be 45 created for users or groups of users with particular interests, habits or permissions. An index may exist for each file system, each directory, even each file on a user's hard disk. Indexes are published and subscribed to by users and by systems. It will be important, then, to construct indices that 50 it now maintains to affect the results returned. can be distributed, updated, merged and separated efficiently. #### 4.2. Handling the Queries #### 4.2.1. Knowing the Capture is from Paper A search engine may take different actions when it recog-The engine might handle the query in a way that is more tolerant to the types of errors likely to appear in certain capture methods, for example. It may be able to deduce this from some indicator included in the query (for example a flag indicating the nature of the 60 capture), or it may deduce this from the query itself (for example, it may recognize errors or uncertainties typical of the OCR process). Alternatively, queries from a capture device can reach the engine by a different channel or port or type of connection 65 than those from other sources, and can be distinguished in that way. For example, some embodiments of the system will 12 route queries to the search engine by way of a dedicated gateway. Thus, the search engine knows that all queries passing through the dedicated gateway were originated from a paper document. #### 4.2.2. Use of Context Section 13 below describes a variety of different factors which are external to the captured text itself, yet which can be a significant aid in identifying a document. These include such things as the history of recent scans, the longer-term reading habits of a particular user, the geographic location of a user and the user's recent use of particular electronic documents. Such factors are referred to herein as "context." Some of the context may be handled by the search engine itself, and be reflected in the search results. For example, the search engine may keep track of a user's scanning history, and may also cross-reference this scanning history to conventional keyboard-based queries. In such cases, the search engine maintains and uses more state information about each 20 individual user than do most conventional search engines, and each interaction with a search engine may be considered to extend over several searches and a longer period of time than is typical today. Some of the context may be transmitted to the search stored at the engine so as
to play a part in future queries. Lastly, some of the context will best be handled elsewhere, and so becomes a filter or secondary search applied to the results from the search engine. #### Data-Stream Input to Search An important input into the search process is the broader context of how the community of users is interacting with the rendered version of the document—for example, which documents are most widely read and by whom. There are analogies with a web search returning the pages that are most frequently linked to, or those that are most frequently selected from past search results. For further discussion of this topic, see Sections 13.4 and 14.2. #### 4.2.3. Document Sub-Regions The described system can emit and use not only information about documents as a whole, but also information about sub-regions of documents, even down to individual words. Many existing search engines concentrate simply on locating a document or file that is relevant to a particular query. Those that can work on a finer grain and identify a location within a document will provide a significant benefit for the described system. #### 4.3. Returning the Results The search engine may use some of the further information The system may also return certain documents to which the user has access only as a result of being in possession of the paper copy (Section 7.4). The search engine may also offer new actions or options nizes that a search query originated from a paper document. 55 appropriate to the described system, beyond simple retrieval of the text. #### 5. Markup, Annotations and Metadata In addition to performing the capture-search-retrieve process, the described system also associates extra functionality with a document, and in particular with specific locations or segments of text within a document. This extra functionality is often, though not exclusively, associated with the rendered document by being associated with its electronic counterpart. As an example, hyperlinks in a web page could have the same functionality when a printout of that web page is scanned. In some cases, the functionality is not defined in the electronic document, but is stored or generated elsewhere. This layer of added functionality is referred to herein as #### 5.1. Overlays, Static and Dynamic One way to think of the markup is as an "overlay" on the document, which provides further information about—and 5 may specify actions associated with—the document or some portion of it. The markup may include human-readable content, but is often invisible to a user and/or intended for machine use. Examples include options to be displayed in a popup-menu on a nearby display when a user captures text 10 from a particular area in a rendered document, or audio samples that illustrate the pronunciation of a particular phrase. #### 5.1.1. Several Layers, Possibly from Several Sources Any document may have multiple overlays simulta- 15 neously, and these may be sourced from a variety of locations. Markup data may be created or supplied by the author of the document, or by the user, or by some other party. Markup data may be attached to the electronic document or (for example, in the same place as the document but with a different filename suffix). Markup data may be included in the search results of the query that located the original document, or may be found by a separate query to the same or another search engine. Markup data may be found using the original 25 captured text and other capture information or contextual information, or it may be found using already-deduced information about the document and location of the capture. Markup data may be found in a location specified in the document, even if the markup itself is not included in the 30 document. The markup may be largely static and specific to the document, similar to the way links on a traditional html web page are often embedded as static data within the html document, but markup may also be dynamically generated and/or 35 applied to a large number of documents. An example of dynamic markup is information attached to a document that includes the up-to-date share price of companies mentioned in that document. An example of broadly applied markup is translation information that is automatically available on 40 multiple documents or sections of documents in a particular language. #### 5.1.2. Personal "Plug-in" Layers Users may also install, or subscribe to particular sources of, markup data, thus personalizing the system's response to 45 particular captures. #### 5.2. Keywords and Phrases, Trademarks and Logos Some elements in documents may have particular "markup" or functionality associated with them based on their own characteristics rather than their location in a par- 50 ticular document. Examples include special marks that are printed in the document purely for the purpose of being scanned, as well as logos and trademarks that can link the user to further information about the organization concerned. The same applies to "keywords" or "key phrases" in the text. 55 Organizations might register particular phrases with which they are associated, or with which they would like to be associated, and attach certain markup to them that would be available wherever that phrase was scanned. Any word, phrase, etc. may have associated markup. For 60 example, the system may add certain items to a pop-up menu (e.g., a link to an online bookstore) whenever the user captures the word "book," or the title of a book, or a topic related to books. In some embodiments, of the system, digital counterpart documents or indices are consulted to determine 65 whether a capture occurred near the word "book," or the title of a book, or a topic related to books—and the system behav14 ior is modified in accordance with this proximity to keyword elements. In the preceding example, note that markup enables data captured from non-commercial text or documents to trigger a commercial transaction. #### 5.3. User-Supplied Content 5.3.1. User Comments and Annotations, Including Multimedia Annotations are another type of electronic information that may be associated with a document. For example, a user can attach an audio file of his/her thoughts about a particular document for later retrieval as voice annotations. As another example of a multimedia annotation, a user may attach photographs of places referred to in the document. The user generally supplies annotations for the document but the system can associate annotations from other sources (for example, other users in a work group may share annotations). #### 5.3.2. Notes from Proof-Reading An important example of user-sourced markup is the annoembedded in it. It may be found in a conventional location 20 tation of paper documents as part of a proofreading, editing or reviewing process. #### 5.4. Third-Party Content As mentioned earlier, markup data may often be supplied by third parties, such as by other readers of the document. Online discussions and reviews are a good example, as are community-managed information relating to particular works, volunteer-contributed translations and explanations. Another example of third-party markup is that provided by advertisers. 5.5. Dynamic Markup Based on Other Users' Data Streams By analyzing the data captured from documents by several or all users of the system, markup can be generated based on the activities and interests of a community. An example might be an online bookstore that creates markup or annotations that tell the user, in effect, "People who enjoyed this book also enjoyed" The markup may be less anonymous, and may tell the user which of the people in his/her contact list have also read this document recently. Other examples of datastream analysis are included in Section 14. 5.6. Markup Based on External Events and Data Sources Markup will often be based on external events and data sources, such as input from a corporate database, information from the public Internet, or statistics gathered by the local operating system. Data sources may also be more local, and in particular may provide information about the user's context—his/her identity, location and activities. For example, the system might communicate with the user's mobile phone and offer a markup layer that gives the user the option to send a document to somebody that the user has recently spoken to on the phone. 6. Authentication, Personalization and Security In many situations, the identity of the user will be known. Sometimes this will be an "anonymous identity," where the user is identified only by the serial number of the capture device, for example. Typically, however, it is expected that the system will have a much more detailed knowledge of the user, which can be used for personalizing the system and to allow activities and transactions to be performed in the user's name. #### 6.1. User History and "Life Library" One of the simplest and yet most useful functions that the system can perform is to keep a record for a user of the text that s/he has captured and any further information related to that capture, including the details of any documents found, the location within that document and any actions taken as a result. This stored history is beneficial for both the user and the #### 6.1.1. For the User The user can be presented with a "Life Library," a record of everything s/he has read and captured. This may be simply for personal interest, but may be used, for example, in a library by an academic who is gathering material for the bibliography of 5 his next paper. In some circumstances, the user may wish to make the library public, such as by publishing it on the web in a similar manner to a weblog, so that others may see what s/he is reading and finds of interest. Lastly, in situations where the user captures some text and the system cannot immediately act upon the capture (for example, because an electronic version of the document is not yet available)
the capture can be stored in the library and can be processed later, either automatically or in response to a 15 user request. A user can also subscribe to new markup services and apply them to previously captured scans. #### 6.1.2. For the System A record of a user's past captures is also useful for the system. Many aspects of the system operation can be 20 enhanced by knowing the user's reading habits and history. The simplest example is that any scan made by a user is more likely to come from a document that the user has scanned in the recent past, and in particular if the previous scan was within the last few minutes it is very likely to be from the same 25 document. Similarly, it is more likely that a document is being read in start-to-finish order. Thus, for English documents, it is also more likely that later scans will occur farther down in the document. Such factors can help the system establish the location of the capture in cases of ambiguity, and can also 30 reduce the amount of text that needs to be captured. 6.2. Scanner as Payment, Identity and Authentication Device Because the capture process generally begins with a device of some sort, typically an optical scanner or voice recorder, 35 this device may be used as a key that identifies the user and authorizes certain actions. #### 6.2.1. Associate Scanner with Phone or Other Account The device may be embedded in a mobile phone or in some other way associated with a mobile phone account. For 40 example, a scanner may be associated with a mobile phone account by inserting a SIM card associated with the account into the scanner. Similarly, the device may be embedded in a credit card or other payment card, or have the facility for such a card to be connected to it. The device may therefore be used 45 as a payment token, and financial transactions may be initiated by the capture from the rendered document. #### 6.2.2. Using Scanner Input for Authentication The scanner may also be associated with a particular user or account through the process of scanning some token, symbol or text associated with that user or account. In addition, scanner may be used for biometric identification, for example by scanning the fingerprint of the user. In the case of an audio-based capture device, the system may identify the user by matching the voice pattern of the user or by requiring the 55 user to speak a certain password or phrase. For example, where a user scans a quote from a book and is offered the option to buy the book from an online retailer, the user can select this option, and is then prompted to scan his/her fingerprint to confirm the transaction. See also Sections 15.5 and 15.6. #### 6.2.3. Secure Scanning Device When the capture device is used to identify and authenticate the user, and to initiate transactions on behalf of the user, it is important that communications between the device and 65 other parts of the system are secure. It is also important to guard against such situations as another device impersonating 16 a scanner, and so-called "man in the middle" attacks where communications between the device and other components are intercepted. Techniques for providing such security are well understood in the art; in various embodiments, the hardware and software in the device and elsewhere in the system are configured to implement such techniques. #### 7. Publishing Models and Elements An advantage of the described system is that there is no need to alter the traditional processes of creating, printing or publishing documents in order to gain many of the system's benefits. There are reasons, though, that the creators or publishers of a document—hereafter simply referred to as the "publishers"—may wish to create functionality to support the described system. This section is primarily concerned with the published documents themselves. For information about other related commercial transactions, such as advertising, see Section 10 entitled "P-Commerce." #### 7.1. Electronic Companions to Printed Documents The system allows for printed documents to have an associated electronic presence. Conventionally publishers often ship a CD-ROM with a book that contains further digital information, tutorial movies and other multimedia data, sample code or documents, or further reference materials. In addition, some publishers maintain web sites associated with particular publications which provide such materials, as well as information which may be updated after the time of publishing, such as errata, further comments, updated reference materials, bibliographies and further sources of relevant data, and translations into other languages. Online forums allow readers to contribute their comments about the publication. The described system allows such materials to be much more closely tied to the rendered document than ever before, and allows the discovery of and interaction with them to be much easier for the user. By capturing a portion of text from the document, the system can automatically connect the user to digital materials associated with the document, and more particularly associated with that specific part of the document. Similarly, the user can be connected to online communities that discuss that section of the text, or to annotations and commentaries by other readers. In the past, such information would typically need to be found by searching for a particular page number or chapter. An example application of this is in the area of academic textbooks (Section 17.5). #### 7.2. "Subscriptions" to Printed Documents Some publishers may have mailing lists to which readers can subscribe if they wish to be notified of new relevant matter or when a new edition of the book is published. With the described system, the user can register an interest in particular documents or parts of documents more easily, in some cases even before the publisher has considered providing any such functionality. The readers interest can be fed to the publisher, possibly affecting their decision about when and where to provide updates, further information, new editions or even completely new publications on topics that have proved to be of interest in existing books. ### 7.3. Printed Marks with Special Meaning or Containing 60 Special Data Many aspects of the system are enabled simply through the use of the text already existing in a document. If the document is produced in the knowledge that it may be used in conjunction with the system, however, extra functionality can be added by printing extra information in the form of special marks, which may be used to identify the text or a required action more closely, or otherwise enhance the document's interaction with the system. The simplest and most important example is an indication to the reader that the document is definitely accessible through the system. A special icon might be used, for example, to indicate that this document has an online discussion forum associated with it. Such symbols may be intended purely for the reader, or they may be recognized by the system when scanned and used to initiate some action. Sufficient data may be encoded in the symbol to identify more than just the symbol: it may also store information, for example about the document, edition, and location of the symbol, which could be recognized and read by the system. 7.4. Authorization Through Possession of the Paper Document There are some situations where possession of or access to 15 the printed document would entitle the user to certain privileges, for example, the access to an electronic copy of the document or to additional materials. With the described system, such privileges could be granted simply as a result of the user capturing portions of text from the document, or scan- 20 ning specially printed symbols. In cases where the system needed to ensure that the user was in possession of the entire document, it might prompt the user to scan particular items or phrases from particular pages, e.g. "the second line of page #### 7.5. Documents which Expire If the printed document is a gateway to extra materials and functionality, access to such features can also be time-limited. After the expiry date, a user may be required to pay a fee or obtain a newer version of the document to access the features 30 again. The paper document will, of course, still be usable, but will lose some of its enhanced electronic functionality. This may be desirable, for example, because there is profit for the publisher in receiving fees for access to electronic materials, or in requiring the user to purchase new editions from time to 35 time, or because there are disadvantages associated with outdated versions of the printed document remaining in circulation. Coupons are an example of a type of commercial document that can have an expiration date. 7.6. Popularity Analysis and Publishing Decisions Section 10.5 discusses the use of the system's statistics to influence compensation of authors and pricing of advertise- In some embodiments, the system deduces the popularity of a publication from the activity in the electronic community 45 associated with it as well as from the use of the paper document. These factors may help publishers to make decisions about what they will publish in future. If a chapter in an existing book, for example, turns out to be exceedingly popular, it may be worth expanding into a separate publication. #### 8. Document Access Services An important aspect of the described system is the ability to provide to a user who has access to a rendered copy of a document access to an electronic version of that document. In some cases, a document is freely available on a public net- 55 advantages: work or a private network to which the user has access. The system uses the captured text to identify, locate and retrieve the document, in some cases displaying it on the user's screen or depositing it in their email inbox. In some cases, a document will be available in
electronic 60 form, but for a variety of reasons may not be accessible to the user. There may not be sufficient connectivity to retrieve the document, the user may not be entitled to retrieve it, there may be a cost associated with gaining access to it, or the document may have been withdrawn and possibly replaced by a new version, to name just a few possibilities. The system typically provides feedback to the user about these situations. 18 As mentioned in Section 7.4, the degree or nature of the access granted to a particular user may be different if it is known that the user already has access to a printed copy of the document. #### 8.1. Authenticated Document Access Access to the document may be restricted to specific users, or to those meeting particular criteria, or may only be available in certain circumstances, for example when the user is connected to a secure network. Section 6 describes some of the ways in which the credentials of a user and scanner may be established. 8.2. Document Purchase—Copyright-Owner Compensation Documents that are not freely available to the general public may still be accessible on payment of a fee, often as compensation to the publisher or copyright-holder. The system may implement payment facilities directly or may make use of other payment methods associated with the user, including those described in Section 6.2. #### 8.3. Document Escrow and Proactive Retrieval Electronic documents are often transient; the digital source version of a rendered document may be available now but inaccessible in future. The system may retrieve and store the existing version on behalf of the user, even if the user has not 25 requested it, thus guaranteeing its availability should the user request it in future. This also makes it available for the system's use, for example for searching as part of the process of identifying future captures. In the event that payment is required for access to the document, a trusted "document escrow" service can retrieve the document on behalf of the user, such as upon payment of a modest fee, with the assurance that the copyright holder will be fully compensated in future if the user should ever request the document from the service. Variations on this theme can be implemented if the document is not available in electronic form at the time of capture. The user can authorize the service to submit a request for or make a payment for the document on his/her behalf if the electronic document should become available at a later date. 8.4. Association with Other Subscriptions and Accounts Sometimes payment may be waived, reduced or satisfied based on the user's existing association with another account or subscription. Subscribers to the printed version of a newspaper might automatically be entitled to retrieve the electronic version, for example. In other cases, the association may not be quite so direct: a user may be granted access based on an account established by their employer, or based on their scanning of a printed copy owned by a friend who is a subscriber. #### 8.5. Replacing Photocopying with Scan-and-Print The process of capturing text from a paper document, identifying an electronic original, and printing that original, or some portion of that original associated with the capture, forms an alternative to traditional photocopying with many the paper document need not be in the same location as the final printout, and in any case need not be there at the same time the wear and damage caused to documents by the photocopying process, especially to old, fragile and valuable documents, can be avoided the quality of the copy is typically be much higher records may be kept about which documents or portions of documents are the most frequently copied payment may be made to the copyright owner as part of the process unauthorized copying may be prohibited 8.6. Locating Valuable Originals from Photocopies When documents are particularly valuable, as in the case of legal instruments or documents that have historical or other particular significance, people may typically work from copies of those documents, often for many years, while the originals are kept in a safe location. The described system could be coupled to a database which records the location of an original document, for example in an archiving warehouse, making it easy for somebody with access to a copy to locate the archived original paper document. #### 9. Text Recognition Technologies Optical Character Recognition (OCR) technologies have traditionally focused on images that include a large amount of text, for example from a flat-bed scanner capturing a whole page. OCR technologies often need substantial training and correcting by the user to produce useful text. OCR technologies often require substantial processing power on the machine doing the OCR, and, while many systems use a 20 dictionary, they are generally expected to operate on an effectively infinite vocabulary. All of the above traditional characteristics may be improved upon in the described system. While this section focuses on OCR, many of the issues 25 discussed map directly onto other recognition technologies, in particular speech recognition. As mentioned in Section 3.1, the process of capturing from paper may be achieved by a user reading the text aloud into a device which captures audio. Those skilled in the art will appreciate that principles discussed here with respect to images, fonts, and text fragments often also apply to audio samples, user speech models and phonemes. #### 9.1. Optimization for Appropriate Devices A scanning device for use with the described system will often be small, portable, and low power. The scanning device may capture only a few words at a time, and in some implementations does not even capture a whole character at once, but rather a horizontal slice through the text, many such slices being stitched together to form a recognizable signal from which the text may be deduced. The scanning device may also have very limited processing power or storage so, while in some embodiments it may perform all of the OCR process itself, many embodiments will depend on a connection to a more powerful device, possibly at a later time, to convert the captured signals into text. Lastly, it may have very limited facilities for user interaction, so may need to defer any requests for user input until later, or operate in a "best-guess" mode to a greater degree than is common now. #### 9.2. "Uncertain" OCR The primary new characteristic of OCR within the described system is the fact that it will, in general, examine images of text which exists elsewhere and which may be retrieved in digital form. An exact transcription of the text is therefore not always required from the OCR engine. The 55 OCR system may output a set or a matrix of possible matches, in some cases including probability weightings, which can still be used to search for the digital original. 9.3. Iterative OCR—Guess, Disambiguate, Guess If the device performing the recognition is able to contact 60 the document index at the time of processing, then the OCR process can be informed by the contents of the document corpus as it progresses, potentially offering substantially greater recognition accuracy. Such a connection will also allow the device to inform the 65 user when sufficient text has been captured to identify the digital source. 20 9.4. Using Knowledge of Likely Rendering When the system has knowledge of aspects of the likely printed rendering of a document—such as the font typeface used in printing, or the layout of the page, or which sections are in italics—this too can help in the recognition process. (Section 4.1.1) 9.5. Font Caching—Determine Font on Host, Download to Client As candidate source texts in the document corpus are identified, the font, or a rendering of it, may be downloaded to the device to help with the recognition. 9.6. Autocorrelation and Character Offsets While component characters of a text fragment may be the most recognized way to represent a fragment of text that may be used as a document signature, other representations of the text may work sufficiently well that the actual text of a text fragment need not be used when attempting to locate the text fragment in a digital document and/or database, or when disambiguating the representation of a text fragment into a readable form. Other representations of text fragments may provide benefits that actual text representations lack. For example, optical character recognition of text fragments is often prone to errors, unlike other representations of captured text fragments that may be used to search for and/or recreate a text fragment without resorting to optical character recognition for the entire fragment. Such methods may be more appropriate for some devices used with the current system. Those of ordinary skill in the art and others will appreciate that there are many ways of describing the appearance of text fragments. Such characterizations of text fragments may include, but are not limited to, word lengths, relative word lengths, character heights, character widths, character shapes, character frequencies, token frequencies, and the like. In some embodiments, the offsets between matching text tokens (i.e., the number of intervening tokens plus one) are used to characterize fragments of text. Conventional OCR uses knowledge about fonts, letter structure and shape to attempt to determine characters in scanned text. Embodiments of the present invention are different; they employ a variety of methods that use the rendered text itself to assist in the recognition process. These embodiments use characters (or tokens) to "recognize each other." One way to refer to such self-recognition is "template matching," and is similar to "convolution." To perform such selfrecognition, the system slides a copy of the text horizontally over itself and notes matching regions of the text
images. Prior template matching and convolution techniques encompass a variety of related techniques. These techniques to tokenize and/or recognize characters/tokens will be collec-50 tively referred to herein as "autocorrelation," as the text is used to correlate with its own component parts when matching characters/tokens. When autocorrelating, complete connected regions that match are of interest. This occurs when characters (or groups of characters) overlay other instances of the same character (or group). Complete connected regions that match automatically provide tokenizing of the text into component tokens. As the two copies of the text are slid past each other, the regions where perfect matching occurs (i.e., all pixels in a vertical slice are matched) are noted. When a character/token matches itself, the horizontal extent of this matching (e.g., the connected matching portion of the text) also matches. Note that at this stage there is no need to determine the actual identity of each token (i.e., the particular letter, digit or symbol, or group of these, that corresponds to the token image), only the offset to the next occurrence of the same token in the scanned text. The offset number is the distance (number of tokens) to the next occurrence of the same token. If the token is unique within the text string, the offset is zero (0). The sequence of token offsets thus generated is a signature that can be used to identify the scanned text. In some embodiments, the token offsets determined for a 5 string of scanned tokens are compared to an index that indexes a corpus of electronic documents based upon the token offsets of their contents (Section 4.1.2). In other embodiments, the token offsets determined for a string of scanned tokens are converted to text, and compared to a more 10 conventional index that indexes a corpus of electronic documents based upon their contents As has been noted earlier, a similar token-correlation process may be applied to speech fragments when the capture process consists of audio samples of spoken words. 9.7. Font/Character "Self-Recognition" Conventional template-matching OCR compares scanned images to a library of character images. In essence, the alphabet is stored for each font and newly scanned images are compared to the stored images to find matching characters. 20 The process generally has an initial delay until the correct font has been identified. After that, the OCR process is relatively quick because most documents use the same font throughout. Subsequent images can therefore be converted to text by comparison with the most recently identified font library. The shapes of characters in most commonly used fonts are related. For example, in most fonts, the letter "c" and the letter "e" are visually related—as are "t" and "f," etc. The OCR process is enhanced by use of this relationship to construct templates for letters that have not been scanned yet. For 30 example, where a reader scans a short string of text from a paper document in a previously unencountered font such that the system does not have a set of image templates with which to compare the scanned images the system can leverage the probable relationship between certain characters to construct 35 the font template library even though it has not yet encountered all of the letters in the alphabet. The system can then use the constructed font template library to recognize subsequent scanned text and to further refine the constructed font library. When images cannot be machine-transcribed into a form suitable for use in a search process, the images themselves can be saved for later use by the user, for possible manual transcription, or for processing at a later date when different 45 resources may be available to the system. #### 10. P-Commerce Server Many of the actions made possible by the system result in some commercial transaction taking place. The phrase p-commerce is used herein to describe commercial activities 50 initiated from paper via the system. 10.1. Sales of Documents from their Physical Printed Cop- When a user captures text from a document, the user may be offered that document for purchase either in paper or 55 electronic form. The user may also be offered related documents, such as those quoted or otherwise referred to in the paper document, or those on a similar subject, or those by the 10.2. Sales of Anything Else Initiated or Aided by Paper The capture of text may be linked to other commercial activities in a variety of ways. The captured text may be in a catalog that is explicitly designed to sell items, in which case the text will be associated fairly directly with the purchase of an item (Section 18.2). The text may also be part of an adver- 65 tisement, in which case a sale of the item being advertised may ensue. 22 In other cases, the user captures other text from which their potential interest in a commercial transaction may be deduced. A reader of a novel set in a particular country, for example, might be interested in a holiday there. Someone reading a review of a new car might be considering purchasing it. The user may capture a particular fragment of text knowing that some commercial opportunity will be presented to them as a result, or it may be a side-effect of their capture activities. 10.3. Capture of Labels, Icons, Serial Numbers, Barcodes on an Item Resulting in a Sale Sometimes text or symbols are actually printed on an item or its packaging. An example is the serial number or product id often found on a label on the back or underside of a piece of electronic equipment. The system can offer the user a convenient way to purchase one or more of the same items by capturing that text. They may also be offered manuals, support or repair services. #### 10.4. Contextual Advertisements In addition to the direct capture of text from an advertisement, the system allows for a new kind of advertising which is not necessarily explicitly in the rendered document, but is nonetheless based on what people are reading. 10.4.1. Advertising Based on Scan Context and History In a traditional paper publication, advertisements generally consume a large amount of space relative to the text of a newspaper article, and a limited number of them can be placed around a particular article. In the described system, advertising can be associated with individual words or phrases, and can selected according to the particular interest the user has shown by capturing that text and possibly taking into account their history of past scans. With the described system, it is possible for a purchase to be tied to a particular printed document and for an advertiser to get significantly more feedback about the effectiveness of their advertising in particular print publications. 10.4.2. Advertising Based on User Context and History The system may gather a large amount of information 9.8. Send Anything Unrecognized (Including Graphics) to 40 about other aspects of a user's context for its own use (Section 13); estimates of the geographical location of the user are a good example. Such data can also be used to tailor the advertising presented to a user of the system. #### 10.5. Models of Compensation The system enables some new models of compensation for advertisers and marketers. The publisher of a printed document containing advertisements may receive some income from a purchase that originated from their document. This may be true whether or not the advertisement existed in the original printed form; it may have been added electronically either by the publisher, the advertiser or some third party, and the sources of such advertising may have been subscribed to by the user. #### 10.5.1. Popularity-Based Compensation Analysis of the statistics generated by the system can reveal the popularity of certain parts of a publication (Section 14.2). In a newspaper, for example, it might reveal the amount of time readers spend looking at a particular page or article, or the popularity of a particular columnist. In some circumstances, it may be appropriate for an author or publisher to receive compensation based on the activities of the readers rather than on more traditional metrics such as words written or number of copies distributed. An author whose work becomes a frequently read authority on a subject might be considered differently in future contracts from one whose books have sold the same number of copies but are rarely opened. (See also Section 7.6) #### 10.5.2. Popularity-Based Advertising Decisions about advertising in a document may also be based on statistics about the readership. The advertising space around the most popular columnists may be sold at a premium rate. Advertisers might even be charged or compensated some time after the document is published based on knowledge about how it was received. #### 10.6. Marketing Based on Life Library The "Life Library" or scan history described in Sections 6.1 and 16.1 can be an extremely valuable source of information about the interests and habits of a user. Subject to the appropriate consent and privacy issues, such data can inform offers of goods or services to the user. Even in an anonymous form, the statistics gathered can be exceedingly useful. #### 10.7. Sale/Information at Later Date (when Available) Advertising and other opportunities for commercial transactions may not be presented to the user immediately at the time of text capture. For example, the opportunity to purchase a sequel to a novel may not be available at the time the user is 20 reading the novel, but the system may present them with that opportunity when the sequel is published. A user may capture data that relates to a purchase or other commercial transaction, but may choose not to initiate and/or complete the transaction at the time the capture is made. In 25 some embodiments, data related to captures is stored in a user's Life Library, and these Life Library entries can remain "active" (i.e.,
capable of subsequent interactions similar to those available at the time the capture was made). Thus a user may review a capture at some later time, and optionally complete a transaction based on that capture. Because the system can keep track of when and where the original capture occurred, all parties involved in the transaction can be properly compensated. For example, the author who wrote the story—and the publisher who published the story—that 35 appeared next to the advertisement from which the user captured data can be compensated when, six months later, the user visits their Life Library, selects that particular capture from the history, and chooses "Purchase this item at Amazon" from the pop-up menu (which can be similar or identical to 40 the menu optionally presented at the time of the capture). #### 11. Operating System and Application Integration Modern Operating Systems (OSs) and other software packages have many characteristics that can be advantageously exploited for use with the described system, and may 45 also be modified in various ways to provide an even better platform for its use. ## 11.1. Incorporation of Scan and Print-Related Information in Metadata and Indexing New and upcoming file systems and their associated databases often have the ability to store a variety of metadata associated with each file. Traditionally, this metadata has included such things as the ID of the user who created the file, the dates of creation, last modification, and last use. Newer file systems allow such extra information as keywords, image 55 characteristics, document sources and user comments to be stored, and in some systems this metadata can be arbitrarily extended. File systems can therefore be used to store information that would be useful in implementing the current system. For example, the date when a given document was 60 last printed can be stored by the file system, as can details about which text from it has been captured from paper using the described system, and when and by whom. Operating systems are also starting to incorporate search engine facilities that allow users to find local files more easily. These facilities can be advantageously used by the system. It means that many of the search-related concepts discussed in 24 Sections 3 and 4 apply not just to today's Internet-based and similar search engines, but also to every personal computer. In some cases specific software applications will also include support for the system above and beyond the facilities provided by the OS. #### 11.2. OS Support for Capture Devices As the use of capture devices such as pen scanners becomes increasingly common, it will become desirable to build support for them into the operating system, in much the same way as support is provided for mice and printers, since the applicability of capture devices extends beyond a single software application. The same will be true for other aspects of the system's operation. Some examples are discussed below. In some embodiments, the entire described system, or the core of it, is provided by the OS. In some embodiments, support for the system is provided by Application Programming Interfaces (APIs) that can be used by other software packages, including those directly implementing aspects of the system. 11.2.1. Support for OCR and Other Recognition Technologies Most of the methods of capturing text from a rendered document require some recognition software to interpret the source data, typically a scanned image or some spoken words, as text suitable for use in the system. Some OSs include support for speech or handwriting recognition, though it is less common for OSs to include support for OCR, since in the past the use of OCR has typically been limited to a small range of applications. As recognition components become part of the OS, they can take better advantage of other facilities provided by the OS. Many systems include spelling dictionaries, grammar analysis tools, internationalization and localization facilities, for example, all of which can be advantageously employed by the described system for its recognition process, especially since they may have been customized for the particular user to include words and phrases that he/she would commonly encounter. If the operating system includes full-text indexing facilities, then these can also be used to inform the recognition process, as described in Section 9.3. #### 11.2.2. Action to be Taken on Scans If an optical scan or other capture occurs and is presented to the OS, it may have a default action to be taken under those circumstances in the event that no other subsystem claims ownership of the capture. An example of a default action is presenting the user with a choice of alternatives, or submitting the captured text to the OS's built-in search facilities. ## 11.2.3. OS has Default Action for Particular Documents or Document Types If the digital source of the rendered document is found, the OS may have a standard action that it will take when that particular document, or a document of that class, is scanned. Applications and other subsystems may register with the OS as potential handlers of particular types of capture, in a similar manner to the announcement by applications of their ability to handle certain file types. Markup data associated with a rendered document, or with a capture from a document, can include instructions to the operating system to launch specific applications, pass applications arguments, parameters, or data, etc. 11.2.4. Interpretation of Gestures and Mapping into Standard Actions In Section 12.1.3 the use of "gestures" is discussed, particularly in the case of optical scanning, where particular movements made with a handheld scanner might represent standard actions such as marking the start and end of a region of text. This is analogous to actions such as pressing the shift key on a keyboard while using the cursor keys to select a region of text, or using the wheel on a mouse to scroll a document. Such actions by the user are sufficiently standard that they are interpreted in a system-wide way by the OS, thus ensuring 5 consistent behavior. The same is desirable for scanner gestures and other scanner-related actions. ## 11.2.5. Set Response to Standard (and Non-Standard) Iconic/Text Printed Menu Items In a similar way, certain items of text or other symbols may, 10 when scanned, cause standard actions to occur, and the OS may provide a selection of these. An example might be that scanning the text "[print]" in any document would cause the OS to retrieve and print a copy of that document. The OS may also provide a way to register such actions and associate them 15 with particular scans. ## 11.3. Support in System GUI Components for Typical Scan-Initiated Activities Most software applications are based substantially on standard Graphical User Interface components provided by the 20 OS. Use of these components by developers helps to ensure consistent behavior across multiple packages, for example that pressing the left-cursor key in any text-editing context should move the cursor to the left, without every programmer 25 having to implement the same functionality independently. A similar consistency in these components is desirable when the activities are initiated by text-capture or other aspects of the described system. Some examples are given below. #### 11.3.1. Interface to Find Particular Text Content A typical use of the system may be for the user to scan an area of a paper document, and for the system to open the electronic counterpart in a software package that is able to display or edit it, and cause that package to scroll to and 35 highlight the scanned text (Section 12.2.1). The first part of this process, finding and opening the electronic document, is typically provided by the OS and is standard across software packages. The second part, however—locating a particular piece of text within a document and causing the package to 40 scroll to it and highlight it—is not yet standardized and is often implemented differently by each package. The availability of a standard API for this functionality could greatly enhance the operation of this aspect of the system. #### 11.3.2. Text Interactions Once a piece of text has been located within a document, the system may wish to perform a variety of operations upon that text. As an example, the system may request the surrounding text, so that the user's capture of a few words could result in the system accessing the entire sentence or paragraph 50 containing them. Again, this functionality can be usefully provided by the OS rather than being implemented in every piece of software that handles text. #### 11.3.3. Contextual (Popup) Menus Some of the operations that are enabled by the system will 55 require user feedback, and this may be optimally requested within the context of the application handling the data. In some embodiments, the system uses the application pop-up menus traditionally associated with clicking the right mouse button on some text. The system inserts extra options into 60 such menus, and causes them to be displayed as a result of activities such as scanning a paper document. #### 11.4. Web/Network Interfaces In today's increasingly networked world, much of the functionality available on individual machines can also be 65 accessed over a network, and the functionality associated with the described system is no exception. As an example, in 26 an office environment, many paper documents received by a user may have been printed by other users' machines on the same corporate network. The system on one computer, in response to a capture, may be able to query those other machines for documents which may correspond to that capture, subject to the appropriate permission controls. #### 11.5. Printing of Document Causes Saving An important factor in the integration of paper and digital documents is maintaining as much information as
possible about the transitions between the two. In some embodiments, the OS keeps a simple record of when any document was printed and by whom. In some embodiments, the OS takes one or more further actions that would make it better suited for use with the system. Examples include: Saving the digital rendered version of every document printed along with information about the source from which it was printed Saving a subset of useful information about the printed version—for example, the fonts used and where the line breaks occur—which might aid future scan interpretation Saving the version of the source document associated with any printed copy Indexing the document automatically at the time of printing and storing the results for future searching #### 11.6. My (Printed/Scanned) Documents An OS often maintains certain categories of folders or files that have particular significance. A user's documents may, by convention or design, be found in a "My Documents" folder, for example. Standard file-opening dialogs may automatically include a list of recently opened documents. On an OS optimized for use with the described system, such categories may be enhanced or augmented in ways that take into account a user's interaction with paper versions of the stored files. Categories such as "My Printed Documents" or "My Recently-Read Documents" might usefully be identified and incorporated in its operations. #### 11.7. OS-Level Markup Hierarchies Since important aspects of the system are typically provided using the "markup" concepts discussed in Section 5, it would clearly be advantageous to have support for such markup provided by the OS in a way that was accessible to multiple applications as well as to the OS itself. In addition, layers of markup may be provided by the OS, based on its own knowledge of documents under its control and the facilities it is able to provide. #### 11.8. Use of OS DRM Facilities An increasing number of operating systems support some form of "Digital Rights Management": the ability to control the use of particular data according to the rights granted to a particular user, software entity or machine. It may inhibit unauthorized copying or distribution of a particular document, for example. #### 12. Úser Interface The user interface of the system may be entirely on a PC, if the capture device is relatively dumb and is connected to it by a cable, or entirely on the device, if it is sophisticated and with significant processing power of its own. In some cases, some functionality resides in each component. Part, or indeed all, of the system's functionality may also be implemented on other devices such as mobile phones or PDAs. The descriptions in the following sections are therefore indications of what may be desirable in certain implementations, but they are not necessarily appropriate for all and may be modified in several ways. #### 12.1. On the Capture Device With all capture devices, but particularly in the case of an optical scanner, the user's attention will generally be on the device and the paper at the time of scanning. It is very desirable, then, that any input and feedback needed as part of the process of scanning do not require the user's attention to be elsewhere, for example on the screen of a computer, more than is necessary. #### 12.1.1. Feedback on Scanner A handheld scanner may have a variety of ways of providing feedback to the user about particular conditions. The most obvious types are direct visual, where the scanner incorporates indicator lights or even a full display, and auditory, where the scanner can make beeps, clicks or other sounds. Important alternatives include tactile feedback, where the 15 scanner can vibrate, buzz, or otherwise stimulate the user's sense of touch, and projected feedback, where it indicates a status by projecting onto the paper anything from a colored spot of light to a sophisticated display. Important immediate feedback that may be provided on the 20 device includes: feedback on the scanning process—user scanning too fast, at too great an angle, or drifting too high or low on a particular line sufficient content—enough has been scanned to be pretty 25 certain of finding a match if one exists—important for disconnected operation context known—a source of the text has been located unique context known—one unique source of the text has been located availability of content—indication of whether the content is freely available to the user, or at a cost Many of the user interactions normally associated with the later stages of the system may also take place on the capture device if it has sufficient abilities, for example, to display part 35 or all of a document. #### 12.1.2. Controls on Scanner The device may provide a variety of ways for the user to provide input in addition to basic text capture. Even when the device is in close association with a host machine that has 40 input options such as keyboards and mice, it can be disruptive for the user to switch back and forth between manipulating the scanner and using a mouse, for example. The handheld scanner may have buttons, scroll/jog-wheels, touch-sensitive surfaces, and/or accelerometers for 45 detecting the movement of the device. Some of these allow a richer set of interactions while still holding the scanner. For example, in response to scanning some text, the system presents the user with a set of several possible matching documents. The user uses a scroll-wheel on the side of the 50 scanner is to select one from the list, and clicks a button to confirm the selection. #### 12.1.3. Gestures The primary reason for moving a scanner across the paper is to capture text, but some movements may be detected by the 55 device and used to indicate other user intentions. Such movements are referred to herein as "gestures." As an example, the user can indicate a large region of text by scanning the first few words in conventional left-to-right order, and the last few in reverse order, i.e. right to left. The 60 user can also indicate the vertical extent of the text of interest by moving the scanner down the page over several lines. A backwards scan might indicate cancellation of the previous scan operation. #### 12.1.4. Online/Offline Behavior Many aspects of the system may depend on network connectivity, either between components of the system such as a 28 scanner and a host laptop, or with the outside world in the form of a connection to corporate databases and Internet search. This connectivity may not be present all the time, however, and so there will be occasions when part or all of the system may be considered to be "offline." It is desirable to allow the system to continue to function usefully in those circumstances. The device may be used to capture text when it is out of contact with other parts of the system. A very simple device may simply be able to store the image or audio data associated with the capture, ideally with a timestamp indicating when it was captured. The various captures may be uploaded to the rest of the system when the device is next in contact with it, and handled then. The device may also upload other data associated with the captures, for example voice annotations associated with optical scans, or location information. More sophisticated devices may be able to perform some or all of the system operations themselves despite being disconnected. Various techniques for improving their ability to do so are discussed in Section 15.3. Often it will be the case that some, but not all, of the desired actions can be performed while offline. For example, the text may be recognized, but identification of the source may depend on a connection to an Internet-based search engine. In some embodiments, the device therefore stores sufficient information about how far each operation has progressed for the rest of the system to proceed efficiently when connectivity is restored. The operation of the system will, in general, benefit from immediately available connectivity, but there are some situations in which performing several captures and then processing them as a batch can have advantages. For example, as discussed in Section 13 below, the identification of the source of a particular capture may be greatly enhanced by examining other captures made by the user at approximately the same time. In a fully connected system where live feedback is being provided to the user, the system is only able to use past captures when processing the current one. If the capture is one of a batch stored by the device when offline, however, the system will be able to take into account any data available from later captures as well as earlier ones when doing its analysis. #### 12.2. On a Host Device A scanner will often communicate with some other device, such as a PC, PDA, phone or digital camera to perform many of the functions of the system, including more detailed interactions with the user. #### 12.2.1. Activities Performed in Response to a Capture When the host device receives a capture, it may initiate a variety of activities. An incomplete list of possible activities performed by the system after locating and electronic counterpart document associated with the capture and a location within that document follows. The details of the capture may be stored in the user's history. (Section 6.1) The document may be retrieved from local storage or a remote location. (Section 8) The operating system's metadata and other records associated with the document may be updated. (Section 11.1) Markup associated with the document may be examined to determine the next relevant operations. (Section 5) A software application may be started to edit, view or otherwise operate on the document. The choice of application may depend on the source document, or on the contents of the scan, or on some other aspect of the capture. (Section 11.2.2, 11.2.3) The application may scroll to, highlight, move the insertion point to, or
otherwise indicate the location of the capture. (Section 11.3) The precise bounds of the captured text may be modified, for example to select whole words, sentences or para- 5 graphs around the captured text. (Section 11.3.2) The user may be given the option to copy the capture text to the clipboard or perform other standard operating system or application-specific operations upon it. Annotations may be associated with the document or the 10 captured text. These may come from immediate user input, or may have been captured earlier, for example in the case of voice annotations associated with an optical scan. (Section 19.4) Markup may be examined to determine a set of further 15 possible operations for the user to select. #### 12.2.2. Contextual Popup Menus Sometimes the appropriate action to be taken by the system will be obvious, but sometimes it will require a choice to be made by the user. One good way to do this is through the use 20 of "popup menus" or, in cases where the content is also being displayed on a screen, with so-called "contextual menus" that appear close to the content. (See Section 11.3.3). In some embodiments, the scanner device projects a popup menu onto the paper document. A user may select from such menus 25 using traditional methods such as a keyboard and mouse, or by using controls on the capture device (Section 12.1.2), gestures (Section 12.1.3), or by interacting with the computer display using the scanner (Section 12.2.4). In some embodiments, the popup menus which can appear as a result of a 30 capture include default items representing actions which occur if the user does not respond—for example, if the user ignores the menu and makes another capture. #### 12.2.3. Feedback on Disambiguation When a user starts capturing text, there will initially be 35 several documents or other text locations that it could match. As more text is captured, and other factors are taken into account (Section 13), the number of candidate locations will decrease until the actual location is identified, or further disambiguation is not possible without user input. In some 40 cal location. A user in Paris is much more likely to be reading embodiments, the system provides a real-time display of the documents or the locations found, for example in list, thumbnail-image or text-segment form, and for the number of elements in that display to reduce in number as capture continues. In some embodiments, the system displays thumbnails of 45 all candidate documents, where the size or position of the thumbnail is dependent on the probability of it being the correct match. When a capture is unambiguously identified, this fact may be emphasized to the user, for example using audio feedback. 50 Sometimes the text captured will occur in many documents and will be recognized to be a quotation. The system may indicate this on the screen, for example by grouping documents containing a quoted reference around the original source document. #### 12.2.4. Scanning from Screen Some optical scanners may be able to capture text displayed on a screen as well as on paper. Accordingly, the term rendered document is used herein to indicate that printing capture of text or symbols for use by the system may be equally valuable when that text is displayed on an electronic display. The user of the described system may be required to interact with a computer screen for a variety of other reasons, such 65 as to select from a list of options. It can be inconvenient for the user to put down the scanner and start using the mouse or 30 keyboard. Other sections have described physical controls on the scanner (Section 12.1.2) or gestures (Section 12.1.3) as methods of input which do not require this change of tool, but using the scanner on the screen itself to scan some text or symbol is an important alternative provided by the system. In some embodiments, the optics of the scanner allow it to be used in a similar manner to a light-pen, directly sensing its position on the screen without the need for actual scanning of text, possibly with the aid of special hardware or software on the computer. #### 13. Context Interpretation An important aspect of the described system is the use of other factors, beyond the simple capture of a string of text, to help identify the document in use. A capture of a modest amount of text may often identify the document uniquely, but in many situations it will identify a few candidate documents. One solution is to prompt the user to confirm the document being scanned, but a preferable alternative is to make use of other factors to narrow down the possibilities automatically. Such supplemental information can dramatically reduce the amount of text that needs to be captured and/or increase the reliability and speed with which the location in the electronic counterpart can be identified. This extra material is referred to as "context," and it was discussed briefly in Section 4.2.2. We now consider it in more depth. #### 13.1. System and Capture Context Perhaps the most important example of such information is the user's capture history. It is highly probable that any given capture comes from the same document as the previous one, or from an associated document, especially if the previous capture took place in the last few minutes (Section 6.1.2). Conversely, if the system detects that the font has changed between two scans, it is more likely that they are from different documents. Also useful are the user's longer-term capture history and reading habits. These can also be used to develop a model of the user's interests and associations. #### 13.2. User's Real-World Context Another example of useful context is the user's geographi-Le Monde than the Seattle Times, for example. The timing, size and geographical distribution of printed versions of the documents can therefore be important, and can to some degree be deduced from the operation of the system. The time of day may also be relevant, for example in the case of a user who always reads one type of publication on the way to work, and a different one at lunchtime or on the train going home. #### 13.3. Related Digital Context The user's recent use of electronic documents, including those searched for or retrieved by more conventional means, can also be a helpful indicator. In some cases, such as on a corporate network, other factors may be usefully considered: Which documents have been printed recently? Which documents have been modified recently on the corporate file server? Which documents have been emailed recently? All of these examples might suggest that a user was more onto paper is not the only form of rendering, and that the 60 likely to be reading a paper version of those documents. In contrast, if the repository in which a document resides can affirm that the document has never been printed or sent anywhere where it might have been printed, then it can be safely eliminated in any searches originating from paper. #### 13.4. Other Statistics—the Global Context Section 14 covers the analysis of the data stream resulting from paper-based searches, but it should be noted here that statistics about the popularity of documents with other readers, about the timing of that popularity, and about the parts of documents most frequently scanned are all examples of further factors which can be beneficial in the search process. The system brings the possibility of Google-type page-ranking to 5 the world of paper. See also Section 4.2.2 for some other implications of the use of context for search engines. #### 14. Data-stream Analysis The use of the system generates an exceedingly valuable 10 data-stream as a side effect. This stream is a record of what users are reading and when, and is in many cases a record of what they find particularly valuable in the things they read. Such data has never really been available before for paper documents. Some ways in which this data can be useful for the system, and for the user of the system, are described in Section 6.1. This section concentrates on its use for others. There are, of course, substantial privacy issues to be considered with any distribution of data about what people are reading, but such 20 issues as preserving the anonymity of data are well known to those of skill in the art. #### 14.1. Document Tracking When the system knows which documents any given user is reading, it can also deduce who is reading any given document. This allows the tracking of a document through an organization, to allow analysis, for example, of who is reading it and when, how widely it was distributed, how long that distribution took, and who has seen current versions while others are still working from out-of-date copies. For published documents that have a wider distribution, the tracking of individual copies is more difficult, but the analysis of the distribution of readership is still possible. 14.2. Read Ranking—Popularity of Documents and Sub-Regions In situations where users are capturing text or other data that is of particular interest to them, the system can deduce the popularity of certain documents and of particular sub-regions of those documents. This forms a valuable input to the system itself (Section 4.2.2) and an important source of information 40 for authors, publishers and advertisers (Section 7.6, Section 10.5). This data is also useful when integrated in search engines and search indices—for example, to assist in ranking search results for queries coming from rendered documents, and/or to assist in ranking conventional queries typed into a 45 web browser. #### 14.3. Analysis of Users—Building Profiles Knowledge of what a user is reading enables the system to create a quite detailed model of the user's interests and activities. This can be useful on an abstract statistical basis—"35% 50 of users who buy this newspaper also read the latest book by that author"—but it can also allow other interactions with the individual user,
as discussed below. #### 14.3.1. Social Networking One example is connecting one user with others who have 55 related interests. These may be people already known to the user. The system may ask a university professor, "Did you know that your colleague at XYZ University has also just read this paper?" The system may ask a user, "Do you want to be linked up with other people in your neighborhood who are 60 also how reading Jane Eyre?" Such links may be the basis for the automatic formation of book clubs and similar social structures, either in the physical world or online. #### 14.3.2. Marketing Section 10.6 has already mentioned the idea of offering 65 products and services to an individual user based on their interactions with the system. Current online booksellers, for 32 example, often make recommendations to a user based on their previous interactions with the bookseller. Such recommendations become much more useful when they are based on interactions with the actual books. 14.4. Marketing Based on Other Aspects of the Data-Stream We have discussed some of the ways in which the system may influence those publishing documents, those advertising through them, and other sales initiated from paper (Section 10). Some commercial activities may have no direct interaction with the paper documents at all and yet may be influenced by them. For example, the knowledge that people in one community spend more time reading the sports section of the newspaper than they do the financial section might be of interest to somebody setting up a health club. #### 14.5. Types of Data that May be Captured In addition to the statistics discussed, such as who is reading which bits of which documents, and when and where, it can be of interest to examine the actual contents of the text captured, regardless of whether or not the document has been located. In many situations, the user will also not just be capturing some text, but will be causing some action to occur as a result. It might be emailing a reference to the document to an acquaintance, for example. Even in the absence of information about the identity of the user or the recipient of the email, the knowledge that somebody considered the document worth emailing is very useful. In addition to the various methods discussed for deducing the value of a particular document or piece of text, in some circumstances the user will explicitly indicate the value by assigning it a rating. Lastly, when a particular set of users are known to form a group, for example when they are known to be employees of a particular company, the aggregated statistics of that group can be used to deduce the importance of a particular document to that group. #### 15. Device Features and Functions A capture device for use with the system needs little more than a way of capturing text from a rendered version of the document. As described earlier (Section 1.2), this capture may be achieved through a variety of methods including taking a photograph of part of the document or typing some words into a mobile phone keypad. This capture may be achieved using a small hand-held optical scanner capable of recording a line or two of text at a time, or an audio capture device such as a voice-recorder into which the user is reading text from the document. The device used may be a combination of these—an optical scanner which could also record voice annotations, for example—and the capturing functionality may be built into some other device such as a mobile phone, PDA, digital camera or portable music player. #### 15.1. Input and Output Many of the possibly beneficial additional input and output facilities for such a device have been described in Section 12.1. They include buttons, scroll-wheels and touch-pads for input, and displays, indicator lights, audio and tactile transducers for output. Sometimes the device will incorporate many of these, sometimes very few. Sometimes the capture device will be able to communicate with another device that already has them (Section 15.6), for example using a wireless link, and sometimes the capture functionality will be incorporated into such other device (Section 15.7). #### 15.2. Connectivity In some embodiments, the device implements the majority of the system itself. In some embodiments, however, it often communicates with a PC or other computing device and with the wider world using communications facilities. Often these communications facilities are in the form of a general-purpose data network such as Ethernet, 802.11 or UWB or a standard peripheral-connecting network such as 5 USB, IEEE-1394 (Firewire), Bluetoothu or infra-red. When a wired connection such as Firewire or USB is used, the device may receive electrical power though the same connection. In some circumstances, the capture device may appear to a connected machine to be a conventional peripheral such as a USB 10 storage device. Lastly, the device may in some circumstances "dock" with another device, either to be used in conjunction with that device or for convenient storage. 15.3. Caching and Other Online/Offline Functionality Sections 3.5 and 12.1.4 have raised the topic of disconnected operation. When a capture device has a limited subset of the total system's functionality, and is not in communication with the other parts of the system, the device can still be useful, though the functionality available will sometimes be 20 reduced. At the simplest level, the device can record the raw image or audio data being captured and this can be processed later. For the user's benefit, however, it can be important to give feedback where possible about whether the data captured is likely to be sufficient for the task in hand, whether it can be 25 recognized or is likely to be recognizable, and whether the source of the data can be identified or is likely to be identifiable later. The user will then know whether their capturing activity is worthwhile. Even when all of the above are unknown, the raw data can still be stored so that, at the very 30 least, the user can refer to them later. The user may be presented with the image of a scan, for example, when the scan cannot be recognized by the OCR process. To illustrate some of the range of options available, both a rather minimal optical scanning device and then a much more 35 full-featured one are described below. Many devices occupy a middle ground between the two. 15.3.1. The SimpleScanner—a Low-End Offline Example The SimpleScanner has a scanning head able to read pixels from the page as it is moved along the length of a line of text. 40 It can detect its movement along the page and record the pixels with some information about the movement. It also has a clock, which allows each scan to be time-stamped. The clock is synchronized with a host device when the SimpleScanner has connectivity. The clock may not represent the 45 larly desirable in an optical scanner device. actual time of day, but relative times may be determined from it so that the host can deduce the actual time of a scan, or at worst the elapsed time between scans. The SimpleScanner does not have sufficient processing power to perform any OCR itself, but it does have some basic 50 knowledge about typical word-lengths, word-spacings, and their relationship to font size. It has some basic indicator lights which tell the user whether the scan is likely to be readable, whether the head is being moved too fast, too slowly or too inaccurately across the paper, and when it determines 55 that sufficient words of a given size are likely to have been scanned for the document to be identified. The SimpleScanner has a USB connector and can be plugged into the USB port on a computer, where it will be recharged. To the computer it appears to be a USB storage 60 device on which time-stamped data files have been recorded, and the rest of the system software takes over from this point. 15.3.2. The SuperScanner—a High-End Offline Example The SuperScanner also depends on connectivity for its full operation, but it has a significant amount of on-board storage 65 and processing which can help it make better judgments about the data captured while offline. 34 As it moves along the line of text, the captured pixels are stitched together and passed to an OCR engine that attempts to recognize the text. A number of fonts, including those from the user's most-read publications, have been downloaded to it to help perform this task, as has a dictionary that is synchronized with the user's spelling-checker dictionary on their PC and so contains many of the words they frequently encounter. Also stored on the scanner is a list of words and phrases with the typical frequency of their use—this may be combined with the dictionary. The scanner can use the frequency statistics both to help with the recognition process and also to inform its judgment about when a sufficient quantity of text has been captured; more frequently used phrases are less likely to be useful as the basis for a search query. In addition, the full index for the articles in the recent issues of the newspapers and periodicals most commonly read by the user are stored on the device, as are the indices for the books the user has recently purchased from an online bookseller, or from which the user has scanned anything within the last few months. Lastly, the titles of several thousand of the most popular publications which have data available for the system are stored so that, in the absence of other information the user can scan the title and have a good idea as to whether or not captures from a particular work are likely to be retrievable in electronic form later. During the scanning process, the system informs user that the captured data has been of sufficient quality and of a sufficient nature to make it probable that the electronic copy can be retrieved when connectivity is restored. Often the system indicates to the user that the scan is known to have been successful and
that the context has been recognized in one of the on-board indices, or that the publication concerned is known to be making its data available to the system, so the later retrieval ought to be successful. The SuperScanner docks in a cradle connected to a PC's Firewire or USB port, at which point, in addition to the upload of captured data, its various onboard indices and other databases are updated based on recent user activity and new publications. It also has the facility to connect to wireless public networks or to communicate via Bluetooth to a mobile phone and thence with the public network when such facilities are available. 15.4. Features for Optical Scanning We now consider some of the features that may be particu- 15.4.1. Flexible Positioning and Convenient Optics One of the reasons for the continuing popularity of paper is the ease of its use in a wide variety of situations where a computer, for example, would be impractical or inconvenient. A device intended to capture a substantial part of a user's interaction with paper should therefore be similarly convenient in use. This has not been the case for scanners in the past; even the smallest hand-held devices have been somewhat unwieldy. Those designed to be in contact with the page have to be held at a precise angle to the paper and moved very carefully along the length of the text to be scanned. This is acceptable when scanning a business report on an office desk, but may be impractical when scanning a phrase from a novel while waiting for a train. Scanners based on camera-type optics that operate at a distance from the paper may similarly be useful in some circumstances. Some embodiments of the system use a scanner that scans in contact with the paper, and which, instead of lenses, uses an image conduit a bundle of optical fibers to transmit the image from the page to the optical sensor device. Such a device can be shaped to allow it to be held in a natural position; for example, in some embodiments, the part in contact with the page is wedge-shaped, allowing the user's hand to move more naturally over the page in a movement similar to the use of a highlighter pen. The conduit is either in direct contact with the paper or in close proximity to it, and may have a replaceable transparent tip that can protect the image conduit from possible damage. As has been mentioned in Section 12.2.4, the scanner may be used to scan from a screen as well as from paper, and the material of the tip can be chosen to reduce the likelihood of damage to such displays. Lastly, some embodiments of the device will provide feedback to the user during the scanning process which will indicate through the use of light, sound or tactile feedback when the user is scanning too fast, too slow, too unevenly or is drifting too high or low on the scanned line. 15.5. Security, Identity, Authentication, Personalization and Billing As described in Section 6, the capture device may form an important part of identification and authorization for secure transactions, purchases, and a variety of other operations. It 20 may therefore incorporate, in addition to the circuitry and software required for such a role, various hardware features that can make it more secure, such as a smartcard reader, RFID, or a keypad on which to type a PIN. It may also include various biometric sensors to help identify the user. In the case of an optical scanner, for example, the scanning head may also be able to read a fingerprint. For a voice recorder, the voice pattern of the user may be used. 15.6. Device Associations In some embodiments, the device is able to form an association with other nearby devices to increase either its own or their functionality. In some embodiments, for example, it uses the display of a nearby PC or phone to give more detailed feedback about its operation, or uses their network connectivity. The device may, on the other hand, operate in its role as a security and identification device to authenticate operations performed by the other device. Or it may simply form an association in order to function as a peripheral to that device. An interesting aspect of such associations is that they may be initiated and authenticated using the capture facilities of 40 the device. For example, a user wishing to identify themselves securely to a public computer terminal may use the scanning facilities of the device to scan a code or symbol displayed on a particular area of the terminal's screen and so effect a key transfer. An analogous process may be performed using audio 45 signals picked up by a voice-recording device. 15.7. Integration with Other Devices In some embodiments, the functionality of the capture device is integrated into some other device that is already in use. The integrated devices may be able to share a power 50 supply, data capture and storage capabilities, and network interfaces. Such integration may be done simply for convenience, to reduce cost, or to enable functionality that would not otherwise be available. Some examples of devices into which the capture function- 55 ality can be integrated include: an existing peripheral such as a mouse, a stylus, a USB "webcam" camera, a Bluetooth™ headset or a remote control another processing/storage device, such as a PDA, an MP3 60 player, a voice recorder, a digital camera or a mobile phone other often-carried items, just for convenience—a watch, a piece of jewelry, a pen, a car key fob 15.7.1. Mobile Phone Integration As an example of the benefits of integration, we consider the use of a modified mobile phone as the capture device. 36 In some embodiments, the phone hardware is not modified to support the system, such as where the text capture can be adequately done through voice recognition, where they can either be processed by the phone itself, or handled by a system at the other end of a telephone call, or stored in the phone's memory for future processing. Many modern phones have the ability to download software that could implement some parts of the system. Such voice capture is likely to be suboptimal in many situations, however, for example when there is substantial background noise, and accurate voice recognition is a difficult task at the best of times. The audio facilities may best be used to capture voice annotations. In some embodiments, the camera built into many mobile phones is used to capture an image of the text. The phone display, which would normally act as a viewfinder for the camera, may overlay on the live camera image information about the quality of the image and its suitability for OCR, which segments of text are being captured, and even a transcription of the text if the OCR can be performed on the phone. In some embodiments, the phone is modified to add dedicated capture facilities, or to provide such functionality in a dip-on adaptor or a separate Bluetooth-connected peripheral in communication with the phone. Whatever the nature of the capture mechanism, the integration with a modern cellphone has many other advantages. The phone has connectivity with the wider world, which means that queries can be submitted to remote search engines or other parts of the system, and copies of documents may be retrieved for immediate storage or viewing. A phone typically has sufficient processing power for many of the functions of the system to be performed locally, and sufficient storage to capture a reasonable amount of data. The amount of storage can also often be expanded by the user. Phones have reasonably good displays and audio facilities to provide user feedback, and often a vibrate function for tactile feedback. They also have good power supplies. Most significantly of all, they are a device that most users are already carrying. #### PART III #### Example Applications of the System This section lists example uses of the system and applications that may be built on it. This list is intended to be purely illustrative and in no sense exhaustive. 16. Personal Applications 16.1. Life Library The Life Library (see also Section 6.1.1) is a digital archive of any important documents that the subscriber wishes to save and is a set of embodiments of services of this system. Important books, magazine articles, newspaper clippings, etc., can all be saved in digital form in the Life Library. Additionally, the subscribers annotations, comments, and notes can be saved with the documents. The Life Library can be accessed via the Internet and World Wide Web. The system creates and manages the Life Library document archive for subscribers. The subscriber indicates which documents the subscriber wishes to have saved in his life library by scanning information from the document or by otherwise indicating to the system that the particular document is to be added to the subscriber's Life Library. The scanned information is typically text from the document but can also be a barcode or other code identifying the document. The system accepts the code and uses it to identify the source document. After the document is identified the system can store either a copy of the document in the user's Life Library or a link to a source where the document may be obtained. One embodiment of the Life Library system can check whether the subscriber is authorized to obtain the electronic copy. For example, if a reader scans text or an identifier from a copy of an article in the New York Times (NYT) so that the article will be added to the readers Life Library, the Life Library system will verify with the NYT whether the reader is subscribed to the online version of the NYT; if so, the reader gets a copy of the article stored in his Life Library account; if not, information identifying the document and how to order it is stored in his Life Library account In some embodiments, the system maintains a subscriber profile for each subscriber that includes access privilege information. Document access information can be compiled in several ways, two of
which are: 1) the subscriber supplies the document access information to the Life Library system, along with his account names and passwords, etc., or 2) the Life Library service provider queries the publisher with the 20 subscribers information and the publisher responds by providing access to an electronic copy if the Life Library subscriber is authorized to access the material. If the Life Library subscriber is not authorized to have an electronic copy of the document, the publisher provides a price to the Life Library 25 service provider, which then provides the customer with the option to purchase the electronic document. If so, the Life Library service provider either pays the publisher directly and bills the Life Library customer later or the Life Library service provider immediately bills the customer's credit card for 30 the purchase. The Life Library service provider would get a percentage of the purchase price or a small fixed fee for facilitating the transaction. The system can archive the document in the subscriber's personal library and/or any other library to which the subscriber has archival privileges. For example, as a user scans text from a printed document, the Life Library system can identify the rendered document and its electronic counterpart. After the source document is identified, the Life Library system might record information about the source document in the user's personal library and in a group library to which the subscriber has archival privileges. Group libraries are collaborative archives such as a document repository for a group working together on a project, a group of academic researchers, a group web log, etc. The life library can be organized in many ways: chronologically, by topic, by level of the subscriber's interest, by type of publication (newspaper, book, magazine, technical paper, etc.), where read, when read, by ISBN or by Dewey decimal, etc. In one alternative, the system can learn classifications based on how other subscribers have classified the same document. The system can suggest classifications to the user or automatically classify the document for the user. In various embodiments, annotations may be inserted directly into the document or may be maintained in a separate 55 file. For example, when a subscriber scans text from a newspaper article, the article is archived in his Life Library with the scanned text highlighted. Alternatively, the article is archived in his Life Library along with an associated annotation file (thus leaving the archived document unmodified). Embodiments of the system can keep a copy of the source document in each subscribers library, a copy in a master library that many subscribers can access, or link to a copy held by the publisher. In some embodiments, the Life Library stores only the 65 user's modifications to the document (e.g., highlights, etc.) and a link to an online version of the document (stored else- 38 where). The system or the subscriber merges the changes with the document when the subscriber subsequently retrieves the document If the annotations are kept in a separate file, the source document and the annotation file are provided to the subscriber and the subscriber combines them to create a modified document. Alternatively, the system combines the two files prior to presenting them to the subscriber. In another alternative, the annotation file is an overlay to the document file and can be overlaid on the document by software in the subscribers computer. Subscribers to the Life Library service pay a monthly fee to have the system maintain the subscribers archive. Alternatively, the subscriber pays a small amount (e.g., a micropayment) for each document stored in the archive. Alternatively, the subscriber pays to access the subscribers archive on a per-access fee. Alternatively, subscribers can compile libraries and allow others to access the materials/annotations on a revenue share model with the Life Library service provider and copyright holders. Alternatively, the Life Library service provider receives a payment from the publisher when the Life Library subscriber orders a document (a revenue share model with the publisher, where the Life Library service provider gets a share of the publishers revenue). In some embodiments, the Life Library service provider acts as an intermediary between the subscriber and the copyright holder (or copyright holders agent, such as the Copyright Clearance Center, a.k.a. CCC) to facilitate billing and payment for copyrighted materials. The Life Library service provider uses the subscriber's billing information and other user account information to provide this intermediation service. Essentially, the Life Library service provider leverages the pre-existing relationship with the subscriber to enable purchase of copyrighted materials on behalf of the subscriber. In some embodiments, the Life Library system can store excerpts from documents. For example, when a subscriber scans text from a paper document, the regions around the scanned text are excerpted and placed in the Life Library, rather than the entire document being archived in the life library. This is especially advantageous when the document is long because preserving the circumstances of the original scan prevents the subscriber from re-reading the document to find the interesting portions. Of course, a hyperlink to the entire electronic counterpart of the paper document can be included with the excerpt materials. In some embodiments, the system also stores information about the document in the Life Library, such as author, publication title, publication date, publisher, copyright holder (or copyright holder's licensing agent), ISBN, links to public annotations of the document, read rank, etc. Some of this additional information about the document is a form of paper document metadata. Third parties may create public annotation files for access by persons other than themselves, such the general public. Linking to a third party's commentary on a document is advantageous because reading annotation files of other users enhances the subscribers understanding of the document. In some embodiments, the system archives materials by class. This feature allows a Life Library subscriber to quickly store electronic counterparts to an entire class of paper documents without access to each paper document. For example, when the subscriber scans some text from a copy of National Geographic magazine, the system provides the subscriber with the option to archive all back issues of the National Geographic. If the subscriber elects to archive all back issues, the Life Library service provider would then verify with the National Geographic Society whether the subscriber is autho- rized to do so. If not, the Life Library service provider can mediate the purchase of the right to archive the National Geographic magazine collection. #### 16.2. Life Saver A variation on, or enhancement of, the Life Library concept is the "Life Saver," where the system uses the text captured by a user to deduce more about their other activities. The scanning of a menu from a particular restaurant, a program from a particular theater performance, a timetable at a particular railway station, or an article from a local newspaper allows the system to make deductions about the user's location and social activities, and could construct an automatic diary for them, for example as a website. The user would be able to edit and modify the diary, add additional materials such as photographs and, of course, look again at the items 15 scanned. #### 17. Academic Applications Portable scanners supported by the described system have many compelling uses in the academic setting. They can enhance student/teacher interaction and augment the learning 20 experience. Among other uses, students can annotate study materials to suit their unique needs; teachers can monitor classroom performance; and teachers can automatically verify source materials cited in student assignments. #### 17.1. Children's Books A child's interaction with a paper document, such as a book, is monitored by a literacy acquisition system that employs a specific set of embodiments of this system. The child uses a portable scanner that communicates with other elements of the literacy acquisition system. In addition to the 30 portable scanner, the literacy acquisition system includes a computer having a display and speakers, and a database accessible by the computer. The scanner is coupled with the computer (hardwired, short range RF, etc.). When the child sees an unknown word in the book, the child scans it with the 35 scanner. In one embodiment, the literacy acquisition system compares the scanned text with the resources in its database to identify the word. The database includes a dictionary, thesaurus, and/or multimedia files (e.g., sound, graphics, etc.). After the word has been identified, the system uses the computer 40 speakers to pronounce the word and its definition to the child. In another embodiment, the word and its definition are displayed by the literacy acquisition system on the computer's monitor. Multimedia files about the scanned word can also be played through the computer's monitor and speakers. For 45 example, if a child reading "Goldilocks and the Three Bears" scanned the word "bear," the system might pronounce the word "bear" and play a short video about bears on the computer's monitor. In this way, the child learns to pronounce the written word and is visually taught what the word means via 50 the multimedia presentation. The literacy acquisition system provides immediate auditory and/or visual information to enhance the learning process. The child uses this supplementary information to quickly acquire a deeper understanding of the written material. The system can be used to teach beginning readers to read, to help children acquire a larger vocabulary, etc. This system provides the child with
information about words with which the child is unfamiliar or about which the child wants more information. #### 17.2. Literacy Acquisition In some embodiments, the system compiles personal dictionaries. If the reader sees a word that is new, interesting, or particularly useful or troublesome, the reader saves it (along with its definition) to a computer file. This computer file 65 becomes the reader's personalized dictionary. This dictionary is generally smaller in size than a general dictionary so can be 40 downloaded, to a mobile station or associated device and thus be available even when the system isn't immediately accessible. In some embodiments, the personal dictionary entries include audio files to assist with proper word pronunciation and information identifying the paper document from which the word was scanned. In some embodiments, the system creates customized spelling and vocabulary tests for students. For example, as a student reads an assignment, the student may scan unfamiliar words with the portable scanner. The system stores a list of all the words that the student has scanned. Later, the system administers a customized spelling/vocabulary test to the student on an associated monitor (or prints such a test on an associated printer). #### 17.3. Music Teaching The arrangement of notes on a musical staff is similar to the arrangement of letters in a line of text. The same scanning device discussed for capturing text in this system can be used to capture music notation, and an analogous process of constructing a search against databases of known musical pieces would allow the piece from which the capture occurred to be identified which can then be retrieved, played, or be the basis for some further action. #### 17.4. Detecting Plagiarism Teachers can use the system to detect plagiarism or to verify sources by scanning text from student papers and submitting the scanned text to the system. For example, a teacher who wishes to verify that a quote in a student paper came from the source that the student cited can scan a portion of the quote and compare the title of the document identified by the system with the title of the document cited by the student. Likewise, the system can use scans of text from assignments submitted as the student's original work to reveal if the text was instead copied. #### 17.5. Enhanced Textbook In some embodiments, capturing text from an academic textbook links students or staff to more detailed explanations, further exercises, student and staff discussions about the material, related example past exam questions, further reading on the subject, recordings of the lectures on the subject, and so forth. (See also Section 7.1.) ### 17.6. Language Learning In some embodiments, the system is used to teach foreign languages. Scanning a Spanish word, for example, might cause the word to be read aloud in Spanish along with its definition in English. The system provides immediate auditory and/or visual information to enhance the new language acquisition process. The reader uses this supplementary information to acquire quickly a deeper understanding of the material. The system can be used to teach beginning students to read foreign languages, to help students acquire a larger vocabulary, etc. The system provides information about foreign words with which the reader is unfamiliar or for which the reader wants more information. Reader interaction with a paper document, such as a newspaper or book, is monitored by a language skills system. The reader has a portable scanner that communicates with the language skills system includes a computer having a display and speakers, and a database accessible by the computer. The scanner communicates with the computer (hardwired, short range RF, etc.). When the reader sees an unknown word in an article, the reader scans it with the scanner. The database includes a foreign language dictionary, thesaurus, and/or multimedia files (sound, graphics, etc.). In one embodiment, the system compares the scanned text with the resources in its database to identify the scanned word. After the word has been identified, the system uses the computer speakers to pronounce the word and its definition to the reader. In some embodiments, the word and its definition are both displayed on the computer's monitor. Multimedia files about grammar tips related to the 5 scanned word can also be played through the computer's monitor and speakers. For example, if the words "to speak" are scanned, the system might pronounce the word "hablar," play a short audio clip that demonstrates the proper Spanish pronunciation, and display a complete list of the various conjugations of "hablar." In this way, the student learns to pronounce the written word, is visually taught the spelling of the word via the multimedia presentation, and learns how to conjugate the verb. The system can also present grammar tips about the proper usage of "hablar" along with common 15 phrases. In some embodiments, the user scans a word or short phrase from a rendered document in a language other than the user's native language (or some other language that the user knows reasonably well). In some embodiments, the system 20 maintains a prioritized list of the user's "preferred" languages. The system identifies the electronic counterpart of the rendered document, and determines the location of the scan within the document. The system also identifies a second electronic counterpart of the document that has been trans- 25 lated into one of the user's preferred languages, and determines the location in the translated document corresponding to the location of the scan in the original document. When the corresponding location is not known precisely, the system identifies a small region (e.g., a paragraph) that includes the 30 corresponding location of the scanned location. The corresponding translated location is then presented to the user. This provides the user with a precise translation of the particular usage at the scanned location, including any slang or other idiomatic usage that is often difficult to accurately translate 35 on a word-by-word basis. #### 17.7. Gathering Research Materials A user researching a particular topic may encounter all sorts of material, both in print and on screen, which they might wish to record as relevant to the topic in some personal 40 archive. The system would enable this process to be automatic as a result of scanning a short phrase in any piece of material, and could also create a bibliography suitable for insertion into a publication on the subject. #### 18. Commercial Applications Obviously, commercial activities could be made out of almost any process discussed in this document, but here we concentrate on a few obvious revenue streams. #### 18.1. Fee-Based Searching and Indexing Conventional Internet search engines typically provide 50 free search of electronic documents, and also make no charge to the content providers for including their content in the index. In some embodiments, the system provides for charges to users and/or payments to search engines and/or content providers in connection with the operation and use of the 55 system. In some embodiments, subscribers to the system's services pay a fee for searches originating from scans of paper documents. For example, a stockbroker may be reading a Wall Street Journal article about a new product offered by Company X. By scanning the Company X name from the paper document and agreeing to pay the necessary fees, the stockbroker uses the system to search special or proprietary databases to obtain premium information about the company, such as analyst's reports. The system can also make arrangements to have priority indexing of the documents most likely to be read in paper form, for example by making sure all of the 42 newspapers published on a particular day are indexed and available by the time they hit the streets. Content providers may pay a fee to be associated with certain terms in search queries submitted from paper documents. For example, in one embodiment, the system chooses a most preferred content provider based on additional context about the provider (the context being, in this case, that the content provider has paid a fee to be moved up the results list). In essence, the search provider is adjusting paper document search results based on pre-existing financial arrangements with a content provider. See also the description of keywords and key phrases in Section 5.2. Where access to particular content is to be restricted to certain groups of people (such as clients or employees), such content may be protected by a firewall and thus not generally indexable by third parties. The content provider may nonetheless wish to provide an index to the protected content. In such a case, the content provider can pay a service provider to provide the content provider's index to system subscribers. For example, a law firm may index all of a client's documents. The documents are stored behind the law firm's firewall. However, the law firm wants its employees and the client to have access to the documents through the portable scanner so it provides the index (or a pointer to the index) to the service provider, which in turn searches the law firm's index when employees or clients of the law firm submit paper-scanned search terms via their portable scanners. The law firm can provide a list of employees and/or clients to the service provider's system to enable this function or the system can verify access rights by querying the law firm prior to searching the law firm's index. Note that in the preceding example, the index provided by the law firm is only of that client's documents, not an index of all documents at the law firm. Thus, the service provider can only grant the law firm's clients access to the documents that the law firm indexed for the client. There are at least two separate revenue streams that can result from
searches originating from paper documents: one revenue stream from the search function, and another from the content delivery function. The search function revenue can be generated from paid subscriptions from the scanner users, but can also be generated on a per-search charge. The content delivery revenue can be shared with the content provider or copyright holder (the service provider can take a percentage of the sale or a fixed fee, such as a micropayment, for each delivery), but also can be generated by a "referral" model in which the system gets a fee or percentage for every item that the subscriber orders from the online catalog and that the system has delivered or contributed to, regardless of whether the service provider intermediates the transaction. In some embodiments, the system service provider receives revenue for all purchases that the subscriber made from the content provider, either for some predetermined period of time or at any subsequent time when a purchase of an identified product is made. #### 18.2. Catalogs Consumers may use the portable scanner to make purchases from paper catalogs. The subscriber scans information from the catalog that identifies the catalog. This information is text from the catalog, a bar code, or another identifier of the catalog. The subscriber scans information identifying the products that s/he wishes to purchase. The catalog mailing label may contain a customer identification number that identifies the customer to the catalog vendor. If so, the subscriber can also scan this customer identification number. The system acts as an intermediary between the subscriber and the vendor to facilitate the catalog purchase by providing the customer's selection and customer identification number to the vendor. 18.3. Coupons A consumer scans paper coupons and saves an electronic copy of the coupon in the scanner, or in a remote device such as a computer, for later retrieval and use. An advantage of electronic storage is that the consumer is freed from the 5 burden of carrying paper coupons. A further advantage is that the electronic coupons may be retrieved from any location. In some embodiments, the system can track coupon expiration dates, alert the consumer about coupons that will expire soon, and/or delete expired coupons from storage. An advantage for 10 the issuer of the coupons is the possibility of receiving more feedback about who is using the coupons and when and where they are captured and used. 43 19. General Applications 19.1. Forms The system may be used to auto-populate an electronic document that corresponds to a paper form. A user scans in some text or a barcode that uniquely identifies the paper form. The scanner communicates the identity of the form and information identifying the user to a nearby computer. The nearby computer has an Internet connection. The nearby computer can access a first database of forms and a second database having information about the user of the scanner (such as a service provider's subscriber information database). The nearby computer accesses an electronic version of the paper 25 form from the first database and auto-populates the fields of the form from the user's information obtained from the second database. The nearby computer then emails the completed form to the intended recipient. Alternatively, the computer could print the completed form on a nearby printer. Rather than access an external database, in some embodiments, the system has a portable scanner that contains the user's information, such as in an identity module, SIM, or security card. The scanner provides information identifying the form to the nearby PC. The nearby PC accesses the electronic form and queries the scanner for any necessary information to fill out the form. 19.2. Business Cards The system can be used to automatically populate electronic address books or other contact lists from paper docu- 40 ments. For example, upon receiving a new acquaintance's business card, a user can capture an image of the card with his/her cellular phone. The system will locate an electronic copy of the card, which can be used to update the cellular phone's onboard address book with the new acquaintance's 45 contact information. The electronic copy may contain more information about the new acquaintance than can be squeezed onto a business card. Further, the onboard address book may also store a link to the electronic copy such that any changes to the electronic copy will be automatically updated in the cell 50 phone's address book. In this example, the business card optionally includes a symbol or text that indicates the existence of an electronic copy. If no electronic copy exists, the cellular phone can use OCR and knowledge of standard business card formats to fill out an entry in the address book for the 55 new acquaintance. Symbols may also aid in the process of extracting information directly from the image. For example, a phone icon next to the phone number on the business card can be recognized to determine the location of the phone number. 19.3. Proofreading/Editing The system can enhance the proofreading and editing process. One way the system can enhance the editing process is by linking the editor's interactions with a paper document to its electronic counterpart. As an editor reads a paper document and scans various parts of the document, the system will make the appropriate annotations or edits to an electronic 44 counterpart of the paper document. For example, if the editor scans a portion of text and makes the "new paragraph" control gesture with the scanner, a computer in communication with the scanner would insert a "new paragraph" break at the location of the scanned text in the electronic copy of the document. 19.4. Voice Annotation A user can make voice annotations to a document by scanning a portion of text from the document and then making a voice recording that is associated with the scanned text. In some embodiments, the scanner has a microphone to record the user's verbal annotations. After the verbal annotations are recorded, the system identifies the document from which the text was scanned, locates the scanned text within the document, and attaches the voice annotation at that point. In some embodiments, the system converts the speech to text and attaches the annotation as a textual comment. In some embodiments, the system keeps annotations separate from the document, with only a reference to the annotation kept with the document. The annotations then become an annotation markup layer to the document for a specific subscriber or group of users. In some embodiments, for each capture and associated annotation, the system identifies the document, opens it using a software package, scrolls to the location of the scan and plays the voice annotation. The user can then interact with a document while referring to voice annotations, suggested changes or other comments recorded either by themselves or by somebody else. 19.5. Help in Text The described system can be used to enhance paper documents with electronic help menus. In some embodiments, a markup layer associated with a paper document contains help menu information for the document. For example, when a user scans text from a certain portion of the document, the system checks the markup associated with the document and presents a help menu to the user. The help menu is presented on a display on the scanner or on an associated nearby display. 19.6. Use with Displays In some situations, it is advantageous to be able to scan information from a television, computer monitor, or other similar display. In some embodiments, the portable scanner is used to scan information from computer monitors and televisions. In some embodiments, the portable optical scanner has an illumination sensor that is optimized to work with traditional cathode ray tube (CRT) display techniques such as rasterizing, screen blanking, etc. A voice capture device which operates by capturing audio of the user reading text from a document will typically work regardless of whether that document is on paper, on a display, or on some other medium. 19.6.1. Public Kiosks and Dynamic Session IDs One use of the direct scanning of displays is the association of devices as described in Section 15.6. For example, in some embodiments, a public kiosk displays a dynamic session ID on its monitor. The kiosk is connected to a communication network such as the Internet or a corporate intranet. The session ID changes periodically but at least every time that the kiosk is used so that a new session ID is displayed to every user. To use the kiosk, the subscriber scans in the session ID displayed on the kiosk; by scanning the session ID, the user tells the system that he wishes to temporarily associate the kiosk with his scanner for the delivery of content resulting from scans of printed documents or from the kiosk screen itself. The scanner may communicate the Session ID and other information authenticating the scanner (such as a serial number, account number, or other identifying information) directly to the system. For example, the scanner can communicate directly (where "directly" means without passing the message through the kiosk) with the system by sending the session initiation message through the user's cell phone (which is paired with the user's scanner via BluetoothTM). 5 Alternatively, the scanner can establish a wireless link with the kiosk and use the kiosk's communication link by transferring the session initiation information to the kiosk (perhaps via short range RF such as BluetoothTM, etc.); in response, the kiosk sends the session initiation information to the system via its Internet connection. The system can prevent others from using a device that is already associated with a scanner during the period (or session) in which the device is associated with the scanner. This feature is useful to prevent others from using a public kiosk
15 before another person's session has ended. As an example of this concept related to use of a computer at an Internet café, the user scans a barcode on a monitor of a PC which s/he desires to use; in response, the system sends a session ID to the monitor that it displays; the user initiates the session by 20 scanning the session ID from the monitor (or entering it via a keypad or touch screen or microphone on the portable scanner); and the system associates in its databases the session ID with the serial number (or other identifier that uniquely identifies the user's scanner) of his/her scanner so another scanner 25 cannot scan the session ID and use the monitor during his/her session. The scanner is in communication (through wireless link such as BluetoothTM, a hardwired link such as a docking station, etc.) with a PC associated with the monitor or is in direct (i.e., w/o going through the PC) communication with 30 the system via another means such as a cellular phone, etc. #### PART IV #### System Details In the system described above, users can subscribe to various services offered by a service provider. These services support the use of handheld document data capture devices. Such services can include communication, transaction intermediation (e.g., providing payment to a vendor for purchases made by the subscriber with the handheld device), search, data processing (e.g., network assisted OCR, location determination, etc.), data archiving (e.g., life library), and many others. For example, a service provider might provide communication and search functions for a mobile phone so that it can be used to capture information from a document and wirelessly communicate the information to a search engine. In one aspect, information is captured from a rendered document, and markup data associated with the rendered 50 document is applied to at least in part determine actions and/or behaviors available to a user of the handheld document data capture device. In some embodiments, electronic counterparts of the rendered document may be located. Markup data can be stored, among other locations, in an electronic 55 counterpart to a rendered document, in a separate document corresponding to a rendered document, in a database, in a file of metadata associated with one or more rendered documents. The markup data may include information associated with the rendered document and/or its electronic counterpart. The 60 markup data may be applied to determine actions to take on and/or involving the captured information. Markup data may be applied to determine actions and/or behaviors available to a user of the handheld document data capture device and/or actions using and/or involving the electronic counterpart. 65 Markup data may be applied in a hierarchical manner to determine actions and/or behaviors available to a user of the 46 handheld document data capture device and/or actions using and/or involving the electronic counterpart. FIG. 4 is a block diagram of an embodiment of a system to support document interaction. The environment comprises a rendered document 426, a handheld document data capture device 402, and a computing device 404. In some embodiments, the handheld device 402 can capture information optically (e.g., optical scan) or audibly (e.g., voice capture). Thus various embodiments of the capture device 402 can be a portable scanner, voice annotator, mobile phone with or without camera, and any other device suitable for capturing information from rendered document 426. The environment further comprises a network 406, and various electronic counterparts 416-418. In one embodiment, the environment further comprises a user repository of information 410. In some embodiments, the user repository can be a database under control of a service provider (e.g., a mobile communications service provider) or under control of the user perhaps via a host computer such as 404. Examples of a user repository are subscriber accounts and local data caches. The computing device 404 comprises logic 412 for facilitating acts described herein. Logic comprises signals embodied in memory and/or circuits that may be applied to affect the operation of a device. Software and firmware are examples of logic. Logic may also be embodied in circuits (such as logic gates) and in combinations of software and circuits. The network 406 also may include logic 414 to facilitate acts described herein. In one embodiment, the handheld document data capture device 402 includes control logic or a processor as discussed elsewhere in this document. The computing device 404 optionally comprises a display 422, and possibly additional input/output devices as well, for example a mouse, touchpad, keyboard, speakers, a microphone, a wired or wireless network and/or telephone line interface, and so on. Although depicted in FIG. 4 as a separate entity, the user repository 410 may comprise memory that is stored, for example, within handheld document data capture device 402, within computing device 404, within another computing device accessible to the user such as a personal computer, or within memory that is part of network 406. The environment may comprise more than one user repositories 410 may be stored in memories within any of handheld document data capture device 402, computing device 404, and network 406. The types of information stored may comprise instances of captured information, actions associated with instances of captured information, and capture context information, among numerous examples. Further, separate user repositories 410 may be used to store different types of information. The handheld document data capture device 402 may comprise a small, portable device, possibly battery operated. The handheld document data capture device 402 may be the approximate size of a key fob, credit card, or other device conveniently transported in a pocket, on a key chain, in a wallet, etc. The handheld document data capture device 402 may comprise at least part of a pen-style device, a mouse, a cell phone, a remote control, a personal digital assistant, and/or a camera, among numerous possibilities. The handheld document data capture device may additionally or alternatively comprise at least part of a laptop, desktop, or other computer. In some embodiments the computing device 404 and the handheld document data capture device 402 are physically attached or combined. In some embodiments the computing device 404 and the handheld document data capture device 402 are physically separate or not combined. An example of a physical attachment is a handheld document data capture device feature in a cellular phone with digital camera, the combined device being a "smart" phone that can perform some computing tasks and has an Internet interface. An example of a physical distinctness is a handheld document 5 data capture device provided in a "fat pen" shaped device that may be carried anywhere by a user and that uses wireless communication to communicate with a PDA or computer. The computing device **404** may be a cell phone, personal digital assistant, desktop computer, laptop computer, portable 10 music player, television, or set top box, among numerous possibilities. The network **406** can include the Internet, an intranet (e.g. a corporate network or other network of a legal entity), a home network, or some other telephone or data network (e.g. a local phone company, cell phone company, or 15 cable television company network and so on). Information from a document **426** rendered on a print media or an optical screen is captured to a handheld document data capture device memory. Optically capturing (i.e., scanning) comprises applying a charge coupled device or a contact image sensor in order to distinguish optical information such as contrasts and color differences between rendered information and a background of a page or optical display. The handheld document data capture device memory may be, for example, a flash memory or a dynamically refreshed random access memory. The captured information may include one or more image fragments of the document 426. The handheld document data capture device 402, the computing device 404, or the network **406** may process the captured information, resulting in captured information in the form of text produced from, or encodings or other analyses of, one or more image fragments. Alternatively, the processing may result in captured information in the form of a parametric representation of captured symbols, or a statistical representation of captured symbols. 35 Examples of a parametric representation of captured symbols include information about a type or types of the captured symbols (e.g. fonts, styles, etc.), counts or relative positions of the captured symbols of various types, an overall number of captured symbols, a number of captured words, a count of 40 stop and non-stop words or symbols, or the frequency of occurrence of words or symbols of various types. Numerous captures may be performed. Information from each capture may be stored in the handheld document data capture device memory. Subsequent to capturing or as capturing occurs, upon communication between the handheld document data capture device 402 and the separate computing device 404 or network 406, the captured information which has previously been obtained and is stored in captured memory or at that point is being obtained may be transferred to the separate computing device 404 or to the network 406. Communication between the handheld document data capture device 402 and the separate computing device 404 or network 406 may involve wires or optical fibers or may be accomplished via wireless communication such as Blue-55 ToothTM communication. Establishing communication between the handheld document data capture device 402 and the separate computing device 404 or the network 406 may be triggered, for one example, by docking the handheld document data capture 60
device 402 in a cradle coupled to the separate computing device 404 or network 406. In a second example communication is established by establishing a wireless connection when the handheld document data capture device 402 comes within wireless communication range of the separate computing device 404 or network 406. In a third example communication is established by completing a Plug and Play 48 connection between the handheld document data capture device **402** and the separate computing device **404** or network **406** (e.g. via a Universal Serial Bus connection). The handheld document data capture device 402, computing device 404, and/or the network 406 may process captured information as it is collected for various reasons. For example, the captured information may be processed as collected to determine when sufficient information has been captured to identify actions that may be performed with or involving the captured information. In a second example, the captured information may be examined as it is collected to identify a target location within a document (or target locations within one or more documents) associated with the instance. In some embodiments, the handheld document data capture device may communicate with the user performing the capture to inform the user of the conclusions of its processing. In one case, the handheld document data capture device 402 may include a light emitting diode (LED) to notify a user of the handheld document data capture device 402 when sufficient captured information has been obtained to locate a document comprising the captured information. Other manners of signaling the user include providing a tone, beep, or other auditory signal, providing an indication on a display, or producing a vibration. Processing of information associated with the electronic counterpart may determine actions and/or behaviors available to a user of the handheld document data capture device. Many actions may be associated with the captured information. Examples comprise commerce operations (e.g. purchasing a product, reviewing product information, linking to an affiliate sales, promotional, or marketing site, and so on); retrieving the captured document or a portion thereof electronically to a display or memory; associating user created content such as annotations with the content; identifying or retrieving other information related to the content such as advertisements, definitions, translations, or biographical or historical information; controlling some other device or system based on the content. Additionally, actions may be identified to occur after the information retrieved as a result of the capturing is further analyzed, for example, by determining from which regions (e.g., advertising or editorial regions) the information was captured. The handheld document data capture device 402, while in an off-line state (e.g. not in active communication with the computing device 404 and/or network 406), may perform processing to determine at least one of an action or actions associated with the captured information or to facilitate the recognition of a document or documents associated with the captured information. Alternatively or additionally, such processing may be performed upon establishing communication between the handheld document data capture device 402 and the computing device 404 or network 406. In some embodiments, the captured information is processed for use in a search query that is submitted to a search engine or other location function 408, to locate an electronic document or documents 416-418 either comprising the captured information, or comprising related information. The captured information may be processed to form, at least in part, a Uniform Resource Locator or other link to content of a network, for example to form a link to product information. The captured information may be processed to, at least in part, determine a product or class of products, or advertisements associated therewith. The results of such processing (for example, associated actions, one or more determined target locations in associated documents, search query results, links to other content) may be stored in a user repository 410 associated with the captured information. The captured information may be processed to determine the contents of a menu of options presented in conjunction with interaction with the document 426, e.g. to provide docu-5 ment interaction options for a user of the handheld document data capture device. In one embodiment, when captured information is processed while the handheld document data capture device 402 is in an on-line state, a determined menu of options is presented to the user, for example on display 422 of 10 computing device 404. Depending on circumstances, a user may or may not respond by making a selection from the presented menu before capturing additional information. When captured information is collected while the handheld document data capture device 402 is in an off-line state, the 15 captured information may be temporarily stored in the capture device 402 or a host computer 404. In another embodiment, captured data is stored in the user repository 410 with context information. Such context information may include, for example, an indication as to whether the data was captured 20 when the handheld document data capture device was in an off-line state, whether the user has already responded by selecting one or more choices from a presented menu of options associated with the captured data, and whether the captured data has been designated by the user as having a 25 particular status. FIG. 5 is a block diagram of an embodiment of a method of mapping capture information to actions. The capture device 402 is used to capture information from the document 426. Markup data 504 is applied to determine actions and/or 30 behaviors (herein actions and/or behaviors may sometimes be referred to simply as actions) 506 to perform using and/or involving the captured information. The markup data 504 may additionally or alternatively be applied to digital content 503 associated with the document 426 (for example, an electronic version of the document 426). Capture context 512 information may also be applied to determine the actions. Information captured may include textual information, symbols, graphics, icons, watermarks, or codes such as barcodes. In some cases, the graphics, icons, watermarks or 40 codes may correspond with markup information in the markup data. In some embodiments, the markup information may provide an indication of a publication comprising or likely comprising the document. Additionally or alternatively, an advertisement, series of words within text, page 45 header or portion thereof, or page footer or portion thereof may be used in article or publication identification. Examples of an indication of a publication comprising or likely comprising the document include an indication of a periodical comprising the document, the indication of the periodical 50 inches. ascertained according to at least one of words or phrases of the information from the capture. Additionally, fonts, contrast, color, and other information of the document may be obtained by capturing. Examples of information derived at least in part from the information from the capture include at 55 least one of a keyword, icon, symbol, phrase, name or other identifying indicia of a person, place, organization, entity, role, status, or job title. Information associated with the rendered document 426, and applied to determine actions associated with a capture, is 60 referred to herein as "markup data". A markup data can include data or rules and is generally an electronic file separate from the electronic counterpart 503 and the rendered document 426. In some embodiments, information associated with the rendered document 426 can include metadata 65 and database entries mapping regions of the document 426 to its electronic counterpart 503 and comprising at least one of 50 actions or rules for determining actions based on mappings, metadata, and/or context data. If the markup data 504 contains layout information, the location within rendered document 426 from which the data is captured can at least partially determine a context 512 of the captured information. Applying layout information can include associating areas of the rendered document 426 with actions and/or rules to determine actions. Layout information of the electronic counterpart 503 may include a Hypertext Markup Language file comprising at least a portion of the electronic counterpart 503. Actions taken as a result of capturing information from rendered document 426 can include retrieving all or portions of electronic counterpart 503 associated with the document 426. Statistical information about the document 426 may include probabilities that symbols would occur in the document 426 if the document 426 belonged to a predetermined classification. Other statistical information that may be used comprises at least one of usage statistics, transaction statistics, or access statistics. The statistics may be for one individual, such as the user initiating the capture, or for more than one persons who have interacted with versions of the same or similar documents. The statistics may be for access to/usage of/or transactions initiated for a region of the document 426 (e.g. a page or paragraph), the entire document 426 (e.g. an entire article), a document higher in a document hierarchy (e.g. magazine or on-line website), prior usage of articles with associated content categories, or many other statistical aggregations. Examples of a parametric representation of symbols in the document 426 include information about at least one of the type of symbols in the document 426, the relative position of symbols of various types, or the frequency of occurrence of symbols of various types. An action may be identified and ranked (e.g. its desirability
determined, sometimes in relation to other potential actions) and/or rules applied for determining actions based at least in part on statistical characteristics identified as a part of the digital content 503 associated with a capture. Context points are locations, text, or symbols within a rendered document that are defined in markup data or are otherwise associated by the system with an action. Proximity to context points is useful to determine actions in response to a data capture. Context points within the document 426 may include a title, heading, photo, illustration, caption, footnote, endnote, citation, keyword, name, location, phone number, or address, among other things. Distance of the captured information from the context point may be measured in words, sentences, paragraphs, pages, or a physical distance, such as inches Additionally, the location of part or all of captured information may be relative to an identified document region. Identifying a region or regions of the document 426 may include delineating physical areas of the document 426, or defining regions by way of rules or the nature of the content therein. Regions may be assigned a type or types. A document 426 may include regions that at least partially overlap. Region types which may be identified include a product or products region, advertising, sports, news, political, science, technology, hobby, entertainment, opinion, finance, business, classifieds, art, real estate, or a subject region, among other things. Selecting actions associated with, and/or applying rules for determining actions associated with, the region or regions may include selecting at least one of an intersection or union of actions associated with, and/or applying at least one of an intersection or union of rules for determining actions associated with, a region or regions. An action may be identified and ranked (e.g. its desirability determined, sometimes in relation to other potential actions) and/or rules applied for determining actions based at least in part on the captured information's distance to one or more context points and/or keywords and/or markup items and/or 5 its location within or near a document region. Determining actions to take in association with a capture may include determining at least one category for the electronic counterpart 503 associated with the rendered document 426, and selecting an action or actions associated with the category. Determining categories may include a lookup of categories previously associated with the electronic counterpart 503, or an "on the fly" analysis of at least a portion of the electronic counterpart 503 to determine categories to associate with the document 426. Capture context 512 may include an indication of a publication comprising or likely comprising the document 426. The capture context 512 may include a manner in which the capture was performed, a time of day or date or combination 20 thereof at which or during which the capture was performed, a location in the document 426 from which the captured information was obtained, a physical location at which the capture was performed, and/or environment signals proximate in time with the capture. The capture context **512** may 25 include information derived at least in part from the information from the capture, capture habits for a person performing the capture, and/or capture habits for a group with which the person performing the capture is associated. The capture context 512 may include at least one attribute of a person per- 30 forming the capture, and/or at least one attribute of a group with which the person performing the capture is associated. Examples of a physical location at which the capture may be performed include a vehicle, a room, a building, a town or city, a neighborhood, a block, a geographic location, or a 35 functional area. The capture context **512** may include signals proximate in time with the capture e.g. a short time prior to the capture, substantially contemporaneous with the capture, a short time after the capture, or a time interval prior to or after the capture wherein no there are no intervening events or 40 signals to indicate that the environment has changed or is changing. Examples of environment signals (i.e., environmental context) include at least one of a spoken word, phrase, command, name, or sound that is not a language element. Environment signals may include sounds made by nearby activity, conversational sounds, animal, weather, water, or other natural sounds, and sounds of machinery or appliances or tools. Environment signals may also include temperature signals, light level signals, touch pad signals, or signals resulting from the operation of buttons or other controls. Environment signals may also include image information from the local environment, or detection of the presence of a wireless signal, a local radio station, the availability of a wireless network or the proximity of a cellular base station Other examples of environment signals include persons identified from voice information collected from the local environment, persons identified from image information collected from the local environment, and objects identified from image information collected from the local environment. 60 Capture habits (i.e., user history) for a person may include information the person has captured in the past, prior capture behavior of the person, subscriptions of or related to the person, or expressed or inferred content preferences of the person. Habits for a group with which the person performing 65 the capture is associated may include capture habits of people in the same or similar demographic group such as age, 52 income, people who had captured the same or similar information in the past, people who live in the same geographic region, etc. As shown in FIG. 5, the capture context information 512 may at least partially determine actions to take on and/or involving the electronic counterpart 503, and/or actions involving the captured information. Captured information may partially or completely determine the likely document from which the information was captured. For example, a short phrase may sufficiently identify the document 426. As another example, it may be known that based on the known user and the time of day and font size and contrast, a particular newspaper comprises the document from which the information was captured. Examples of a manner in which the capture was performed include a direction of the capture over the document **426**, one or more velocity metrics of the capture over the document **426**, one or more acceleration metrics of the capture over the document **426**, or one or more paths or path components of the capture over the document **426**. Paths or path components of the capture may include a predetermined gesture, symbol, or behavioral pattern. Using any or all of the above sources, potential actions to take or present for selection as a result of the capture may be determined. The handheld document data capture device user may be presented with menu choices reflecting potential actions. In some cases actions, such as associated electronic counterpart retrieval, may automatically occur. The retrieved content 503 may or may not be automatically be rendered or otherwise made available to the user. The menu choices may be ordered to reflect the ranking of the actions. Ranking an action may include determining the likelihood that a user of the handheld document data capture device will select the action; thus the menu choice ordering may reflect most probable user choices. FIG. 6 is a flow chart of an embodiment of a process to determine automatic and selectable actions based upon captured information. At 602 information is captured. At 604 digital content associated with the document from which the information was captured is located. At 606 markup data is applied to determine actions/behaviors available to a user of the handheld document data capture device, or actions/behaviors to undertake using or involving the captured information or using or involving the digital content. If at 607 there are automatic actions determined for the captured information and/or digital content, those automatic actions are performed at 610. Otherwise, if at 608 there are user-selectable actions determined, an action menu is displayed to the user at 612. At 614 the process concludes. Examples of actions available to a user of the handheld document data capture device include at least one of access to a product sale and/or promotion, access to a chat room, creation of or access to a discussion thread, access to a bulletin board, placing a bookmark in the electronic counterpart, 55 viewing enhancements to the electronic counterpart, making enhancements to the electronic counterpart, emailing of, or otherwise transmitting, at least a portion of the electronic counterpart, adding at least a portion of the electronic counterpart to a web page, perform a spelling or grammar check, retrieve an associated image or video or sound clip, retrieve associated text, perform a language translation on at least a portion of the electronic counterpart, retrieve an associated web page (e.g. related and/or affiliate linking), or performing a search for related material. Examples of actions to take on and/or involving the electronic counterpart include generating a charge based on an access charge to the electronic counterpart associated with the rendered document, or a por- tion or portions thereof, storing a copy of the electronic counterpart or a link to the electronic counterpart in a personal archive of the user, highlighting or otherwise annotating at least a portion of the electronic counterpart, printing and/or a manner of printing at least a portion of the electronic counterpart, dialing a phone number comprised by the captured information, locating a phone number and/or address or other personal or professional
information for a person whose name was comprised by the captured information, and displaying and/or indicating how to display at least a portion of the electronic counterpart, to name just some of the possible examples FIG. 7 is a block diagram of an embodiment of a technique to map information from multiple sources to actions. Information associated with the one or more related documents is applied to determine actions and/or behaviors available to a user of the handheld document data capture device and/or actions using and/or involving the electronic counterpart. Documents 702 and 704 are related to the document 426, the 20 document from which information is captured using the handheld document data capture device 402. Examples of documents related to the rendered document include at least one of documents from the same or similar publication, documents sharing a common author, documents from a same or 25 similar genre, documents having similar keywords and/or subjects, or documents from a same or similar category. Each document 702, 704 has corresponding and/or common (shared) markup data 706, 708. Capture information, digital context (derived from any one, two, or all three of documents 426, 702, 704) and capture context are evaluated based on the markup data 504, 706, and 708. The actions are combined by a combiner 710 to determine a final set of actions 506 to take automatically or make available for user selection. In selecting actions associated with, and/or applying rules for determining actions associated with, some of the digital context will have been evaluated based on its joint characteristics in the multiple documents. For example, region analysis and the identification and ranking of actions based on regions, and be determined in part by the combined characteristics of regions in the documents 426, 702, and 704. For example, a purchase action may not be given a high rank based on its location with respect to a region of topic automobile accessories in document 426 alone, but regional analysis of documents 702 and 704 may cause the action to be ranked highly. FIG. 8 is a block diagram of an embodiment of a technique to map capture information from a document hierarchy to actions. In this embodiment, processing captured information may include determining one or more other documents, other 50 than the document identified as directly captured, within a document hierarchy for the capture. Examples of document hierarchy include a page within an article within a magazine, a page within a section within a newspaper, or a page within a chapter within a book within an anthology. Documents 702, 704 and 426 form a document hierarchy. Each document 702, 704, 426 has corresponding markup data 706, 708, 504 that form a markup data hierarchy. Actions are determined from the markup data hierarchy 706, 708, 504, and the actions are combined by a combiner 710 to determine 60 a final set of actions and/or behaviors 506 available and/or to take with or involving the captured information and/or digital content. Analysis of digital content for this embodiment may, in some cases, involve applying rules and/or selecting and ranking actions based on combined document 426, 702, 704 65 characteristics. For example, content categories may be evaluated for likely importance to the user and thus poten- 54 tially action ranking for ad selection may be performed based on the document hierarchy. Region analysis may be based on the document hierarchy. Disclosed are various methods of interacting with rendered documents by use of a handheld document data capture device such as a portable scanner to capture information from a rendered document. In some embodiments, the system locates an electronic counterpart corresponding to the rendered document. In one embodiment, the system applies electronic markup data associated with the rendered document to determine actions and/or behaviors available to the user of the scanner. In some embodiments the actions and/or behaviors are presented to the user in menu form, either on the capture device or an associated display, with the most likely actions/ behaviors at the top of the menu. The system can determine which of a wide range of interactions are offered to the user. To do so, it may be necessary to determine a location in the document from which the information was captured, such as the proximity to features (sometimes referred to as "context points") in the document such as titles, headings, photos, illustrations, captions, footnotes, endnotes, citations, keywords, names, locations, phone numbers, or addresses. Some embodiments of the disclosed system can determine the captured information's distance from one or more context points within the document. The system can rank an action based at least in part on the distance to context points in the document. Distance within documents can be measured by word distance, sentence distance, paragraph distance, or physical distance. The system can used distance information to predict the likelihood that the capture device's user will select a particular action, thus allowing the system to rank certain processes based on the probability that they will be selected. Some embodiments of the system will refer to electronic markup data to interpret the captured data from the rendered document. The markup data typically contains markup information that is associated with system actions and behaviors. Keyword definitions, symbols, actions, and predetermined rules for system behavior, are some examples of markup information. Some embodiments of the system can determine categories with which the electronic content is associated. After the category is determined, the system will select an action or actions associated with the category. Documents can be categorized in many ways. Just a few of those ways are by author, by subject matter, by type of document (e.g., book, magazine, newspaper, webpage, etc.), by the author's employer, etc. Some well-known categorization schemes are the Dewey Decimal System, the Library of Congress Classification System, and the Superintendent of Documents Classification System. In some embodiments, the system can categorize documents that have not yet been categorized by analyzing the captured data, the electronic counterpart, context of the capture, and any other suitable data available. When a capture location has been identified, the system can select actions associated with the location by reference to the electronic markup data. Some system embodiments may apply rules to determine actions associated with the location. These rules can be based on capture context, such as the capture location or time, and can affect the action selected from the markup data. In some embodiments, the system can use the rules to select multiple actions or to select one action from among several possible actions. In some embodiments, the markup data identifies special regions within the rendered document. For example in a newspaper, the markup data could specify special regions such as an advertising region, a product or products region, a sports region, a news region, a political region, a science region, a technology region, a hobby region, an entertainment region, an opinion region, a finance region, a business region, a classifieds region, an arts region, a real estate region, or a subject region. When the capture location is determined, it 5 can be mapped to the special regions defined by the markup data. The regions can overlap in some embodiments, which allows a data capture from one location to trigger multiple rules or actions associated with the overlapping regions. Some system embodiments will take document hierarchies 10 into account when choosing which markup rules to apply. Some examples of document hierarchies are a page within an article within a magazine; a page within a section within a newspaper; and a page within a chapter within a book. For example, if the system is using a page/section/newspaper 15 hierarchy, at least three sets of markup data could apply to the first page of the sports section of the Seattle Times newspaper: markup data specific to the first page; markup data that applies to the entire sports section; and markup data that applies to the entire newspaper. When selecting rules and/or 20 actions to apply in response to a data capture from the first page of the sports section, the system may analyze all three sets of markup data. Various rules may apply to determine precedence amongst the three sets of markup data. Depending upon the precedence rules, the system can resolve conflicts 25 amongst the markup data. A precedence rule may specify that the markup data for the specific page overrides the section and newspaper markup data. In this example, the system would first examine the page markup data to determine if a keyword is in a data capture from the sports page. If the system doesn't 30 find a keyword, it may proceed to examine the sports section markup data and then the newspaper markup data. Many other precedence rules can apply, including rules that take context into account. For example, a precedence rule may specify that the section markup takes precedence over the 35 page markup for a predefined time period. After the time period expires, the system defaults to the normal precedence rules and behaviors/actions in the page markup data would take precedence over those in the section markup data. The system can apply information associated with the electronic content to determine the systems actions or behaviors. Examples of information associated with the electronic content include document metadata (data about documents in aggregate), document specific data (e.g., region definitions, layout, author, publisher, etc.), keyword definitions, behavior 45 rules, markup precedence rules, region rules, etc. The captured information can include an image fragment (e.g., an image of a portion of rendered
document), text produced from an image fragment (e.g., by OCR), a parametric representation of symbols in the rendered document, or statistical information about the content of the document. Statistical information can include probabilities that symbols would occur in the document if the document belonged to a predetermined classification. Parametric representation of symbols in a document can include information about at least one of the type of symbols in the document, the relative position of symbols of various types, and/or the frequency of occurrence of symbols of various types. Parametric representation is useful with the autocorrelation/convolution methods described elsewhere in this document. In some embodiments, actions and/or behaviors available to a user of the handheld document data capture device can include access to a product sale and/or promotion, access to a chat room, creation of or access to a discussion thread, access to a bulletin board, placing a bookmark in the electronic 65 content, viewing enhancements to the electronic content, making enhancements to the electronic content, emailing at least a portion of the electronic content, adding at least a portion of the electronic content to a web page, perform a spelling or grammar check, retrieve an associated image or video or sound clip, retrieve associated text, perform a language translation on at least a portion of the electronic content, retrieve an associated web page, or perform a search for related material. 56 In some embodiments, the system uses context information about the data capture, document, or user to assist in determining actions and/or behaviors available to the user of the scanner. Examples of context information include data capture location (e.g., within the document), time of data capture, geographic location when the data was captured, distribution of the rendered document, and user history. Data capture location context can include the capture's proximity to a title, heading, photo, illustration, caption, footnote, endnote, citation, keyword, name, location, phone number, or address. Distance can be measured in word distance, sentence distance, paragraph distance, or physical distance. Examples of actions that can be determined are: identifying markup information in the scanned information, the markup information associated with actions; determining the distance the scanned information from a keyword in the rendered document; determining at least one category with which the rendered document is associated, and selecting an action based on the determined category; identifying a region of the document from which the information was captured, and selecting actions associated with, and/or applying rules for determining actions associated with, the region or regions: The captured information can include a publication indication (e.g., a document signature). Examples of such an indication include a bar code, icon, symbol, advertisement, page header or portion thereof, page footer or portion thereof, or other document identifier. The publication indication can also include an indication of a periodical document, the indication of the periodical ascertained according to at least one of words or phrases of the information from the scan, the time of day or location of the scan, or attributes of the person performing the scan. Data capture context can include data about the manner in which the capture was performed. For example, data about the manner in which an optical scan was performed can include the scan direction, the scan velocity over the document, scan acceleration, and the scan path. In some scanner embodiments, gestural commands are determined by analysis of the scan path. Data capture context can also include a geographic location at which the scan was performed. The geographic location can be at various levels of precision depending upon the system embodiment and the precision necessary for the action the system is taking. Some systems can determine the user's location at the level of a vehicle, a room, a building, a neighborhood, a town, a state, or a country. Data capture context can also include information about the user's environment at the time of data capture. If the data capture device includes the ability to capture sounds, such environment information includes sounds made by nearby activity, conversational sounds, animal, weather, water, or other natural sounds, and sounds of machinery or appliances or tools. For appropriately equipped devices, environment information can include temperature and light level. In some embodiments, environment information includes images captured from the local environment. For example, a mobile phone user could take pictures of nearby landmarks that could be used to determine the user's location context. Data capture context can include the user's history, the aggregate history of any groups to which the user belongs, and the aggregate history of all the service provider's subscribers. The user's history can include what the person has scanned in the past, prior scan manners of the person, subscriptions of or related to the person, or expressed or inferred content preferences of the person. Users can be grouped by 5 demographics such as age group, income group, people who had scanned the same or similar information in the past, people who live in the same geographic region, etc. Users can also be aggregated according to the groups or associations to which they belong, such as by employer, fan clubs, alumni 10 associations, etc. The layout of the rendered document can provide important context information to the system. For example, the system can use layout context such that scanning the word "purchase" within an advertisement will initiate a purchase of the 15 advertised product but scanning the word "purchase" within the text of an article would not. In some embodiments, the markup data associates rules, instructions, and data with specific areas of the rendered document Some embodiments of the disclosed system implement a method of interacting with a rendered document by using a handheld data capture device to capture information from a rendered document; analyzing the captured information for keywords or other markup information; and referring to the 25 rendered document's markup data to determine actions and/or behaviors available to a user of the data capture device. In some embodiments, the actions and/or behaviors are presented to the user of the handheld device as menu choices on the handheld device or an associated computing device. In some embodiments, the method includes determining a location in the document from which the information was captured. Examples of locations include proximity to at least one of a title, heading, photo, illustration, caption, footnote, endnote, citation, keyword, name, location, phone number, or 35 address. In some embodiments, the method includes determining the distance of the captured information from one or more context points within the document, and ranking an action based at least in part on distance. Distance can be measured in 40 words, sentences, paragraphs, pages, or physical distance (e.g., inches, centimeters, etc). Ranking can take into account the likelihood that a user of the capture device will select the action. In general, it is most likely that the user will take the action associated with the nearest context point. Examples of 45 context points are titles, headings, photos, illustrations, captions, footnotes, endnotes, citations, keywords, names, locations, phone numbers, or addresses. Examples of captured information include text, barcodes, icons, fonts, sub-visual patterns, tokens and symbols. An 50 example of a sub-visual pattern is a watermark. Examples of actions that embodiments of the system can perform are purchasing access or copyrights to the electronic counterpart of the rendered document, storing a copy of the electronic counterpart or a link to the electronic counterpart in 55 a personal archive, highlighting or otherwise annotating the electronic counterpart, printing the electronic counterpart, dialing a phone number comprised by the captured information, locating a phone number and/or address for a person whose name was comprised by the captured information, 60 displaying the electronic counterpart to the user of the capture device. Some embodiments will apply context information to determine actions to take on and/or involving the electronic counterpart and/or the rendered document. Examples of capture context include the user's scan habits, 65 perhaps from the user history portion of the subscriber account or from cookies on the handheld device. The scan 58 habits for any groups with which the user is associated can also be used as capture context. Examples of capture habits are what the person has captured in the past (e.g., always scans data from the Dallas Morning News), prior capture behavior of the person (e.g., only scans data in the morning), subscriptions of or related to the person, or expressed or inferred content preferences of the person. The markup data can also be associated with documents related to the rendered document. Examples of types of documents that are related to the rendered document include documents from the same or similar publication, documents sharing a common author, documents from a same or similar genre, documents having similar keywords and/or subjects, or documents from a same or similar category. The disclosed system supports a method of using a handheld document data capture device to interact with a rendered document, the method including using a scanner to scan information from a rendered document; identifying at least one other document of a document hierarchy to which the document belongs; and applying information associated with the documents of the hierarchy to determine actions and/or behaviors available to a user of the scanner and/or actions using
and/or involving the electronic content. Although the system has been discussed primarily in the context of markup data that is associated with a rendered document, some embodiments of the system have global markup data that is associated with more than one document. This global markup data can be used to interpret and act on captured information even when the rendered document has not been identified and does not have an electronic counterpart. For example, the latest edition of the Financial Times may be so new that it has not yet been indexed by any search engines and a copy of it has not been posted to the Web. When a user scans information from it with his portable scanner, the system may not be able to identify the document or locate an electronic copy of it. The system can, however, still apply default or global markup data to determine if any actions should be taken in response to the captured data. For example, famous trademarks such as MicrosoftTM, GoogleTM, or AmazonTM may be included in default markup data. When the system receives captured information, it will attempt to identify the rendered document and find markup data that is most closely associated with the rendered document. If the system fails to identify the rendered document, it can use the default markup data. By comparing the captured information to the default markup data, the system can determine if the information contains the famous trademarks. If so, the system will perform the action associated with the trademark, such as providing a hyperlink to the appropriate company home page. #### CONCLUSION It will be appreciated by those skilled in the art that the above-described system may be straightforwardly adapted or extended in various ways. While the foregoing description makes reference to particular embodiments, the scope of the invention is defined solely by the claims that following and the elements recited therein. We claim: - 1. A method in a computing system, comprising: - receiving captured text, the captured text being a text transcription of an image of a human-perceptible textual portion of a printed document captured by a handheld information capture device; - identifying an electronic counterpart to the printed document from the captured text, wherein the printed document has one or more context points, each of the context points is a visible feature of the printed document, each of the context points is associated in the electronic counterpart with an action, and each of the context points has a location within the printed document; in response to receiving the captured text, determining a 5 plurality of actions that would be appropriate to perform in response to the capture of the captured text based on the captured text or the electronic counterpart to the printed document; determining a location within the printed document from 10 which the captured text was captured; determining distances between the location within the printed document of the captured text and the locations of one or more context points within the printed document; and selecting an action that is associated with one or more of the context points, wherein selecting is based at least in part on the determined distances. 2. The method of claim 1, further comprising within the printed document of the captured text. 3. The method of claim 2, wherein receiving information related to the determined location further comprises: information related to at least one of a title, heading, caption, footnote, endnote, or citation. 4. The method of claim 1, wherein selecting an action that is associated with one or more of the context points further comprises: determining a likelihood that a user of the handheld information capture device will select the action. - 5. The method of claim 1, wherein a determined distance of the determined distance is at least one of a word distance, a sentence distance, a paragraph distance, a page distance, or a physical distance. - 6. The method of claim 1, wherein the context points within 35 region further comprises: the printed document are located in at least one or more of a title, a heading, a photo, an illustration, a caption, a footnote, an endnote, a citation, a keyword, a name, a location, a phone number, and or an address. - 7. The method of claim 1, further comprising: identifying 40 supplemental information in the captured text; and determining the action to be performed at least in part on the identified information. - 8. The method of claim 1, wherein selecting an action that is associated with one or more of the context points further 45 identifying at least one keyword in the captured text: locating a keyword in information associated with the printed document, wherein the information maps regions of the printed document to regions of the elec- 50 tronic counterpart to the printed document and wherein the information comprises at least one of actions or rules for determining actions; and performing the action associated with the located keyword. 9. The method of claim 1, further comprising: receiving markup data stored in the electronic counterpart to the printed document, wherein the markup data comprises at least one of actions or rules for determining actions, and wherein the markup data is applied to perform one or more actions that involve the captured text. 60 10. The method of claim 9, wherein the context information is in the form of digital information associated with the printed document comprising multimedia data, reference materials, or a link to the online discussion forum. 11. The method of claim 1, further comprising: determining at least one category to which the printed document belongs; and 60 selecting an action based at least in part on the determined 12. The method of claim 11, wherein determining at least one category further comprises: referring to categories previously determined for the printed document. 13. The method of claim 1, wherein receiving captured text from a printed document further comprises: receiving information identifying a region of the printed document from which the captured text was captured; determining the action at least in part on the received information related to the region. 14. The method of claim 13, wherein receiving information from a printed document further comprises: receiving information identifying a type of the identified region of the printed document. 15. The method of claim 14, wherein receiving information receiving information related to the determined location 20 identifying a type of the identified region of the printed document further comprises: > identifying at least one or more of an advertising region, a product or products region, a sports region, a news region, a science region, a technology region, a hobby region, an entertainment region, an opinion region, a finance region, a business region, a classified region, an arts region, a real estate region, or a subject region. 16. The method of claim 13, wherein determining the action at least in part on the received information related to the region further comprises: combining actions determined from more than one region identified as comprising the captured information. 17. The method of claim 13, wherein determining the action at least in part on the received information related to the combining actions determined from regions of more than one related document. 18. The method of claim 13, wherein determining the action at least in part on the received information related to the region further comprises: combining actions determined from regions of multiple documents in a document hierarchy. 19. The method of claim 18, wherein the document hierarchy further comprises: a page within an article within a magazine, a page within a section within a newspaper, or a page within a chapter within a book within an anthology. 20. The method of claim 1, further comprising: displaying to a user an indication of the action to be performed; and upon the user selecting the action to be performed, performing the determined action. 21. A method in a computing system for providing a choice of actions for selection by a user, comprising: receiving captured text, the captured text being a text transcription of an image of a human-perceptible textual portion of a printed document captured by a handheld information capture device; identifying an electronic counterpart to the printed document from the captured text, wherein the printed document has one or more context points, each of the context points is a visible feature of the printed document, each of the context points is associated in the electronic counterpart with an action, and each of the context points has a location within the printed document; determining a location within the printed document from which the captured text was captured; determining distances between the location within the printed document of the captured text and the locations of one or more context points within the printed document: identifying markup data that maps regions of the printed document to regions of the electronic counterpart to the printed document, wherein the markup data comprises at least one of actions or rules for determining actions; determining a plurality of actions to be performed, based at least in part on the determined distances, and based at least in part on markup data associated with the received text; and providing a menu of choices to the user that includes at least a portion of the determined plurality of actions. - 22. The method of claim 21, further comprising automatically performing one or more of the determined plurality of actions. - 23. A system that performs an action in response to a capture of data from a printed document, comprising: - a hand-held device, the hand-held device comprising a data 20 capture component that stores captured text, the captured text being a text transcription of an image of human-perceptible textual data captured
from the printed document and a context component that determines context information that is current at a time of the 25 data capture; and an action component that receives the captured textual data and the determined context information to identify an electronic counterpart to the printed document from the captured text, wherein the printed document has one or more context points, each of the context points is a visible feature of the printed document, each of the context points is associated in the electronic counterpart with an action, and each of the context points has a location within the printed document, and that performs an action based on the received captured data and the received context information by determining a location within the printed document from which the captured text was captured, and by determining distances between the location of the captured text and context 40 points within the printed document; and wherein the action is performed based at least in part on the determined distances. - 24. The method of claim 21, wherein the plurality of actions include launching an application. - 25. The method of claim 21, wherein the plurality of action include scrolling to the captured text in the electronic counterpart. - **26**. The method of claim **21**, wherein the plurality of actions include highlighting the captured text in the electronic counterpart. - 27. The method of claim 21, wherein the plurality of actions include placing a bookmark in the electronic counterpart. - **28**. The method of claim **21**, wherein the plurality of actions comprise providing access to a product sale or promotion, access to a chat room, creation of or access to a discussion thread, or access to a bulletin board. - **29**. The method of claim **21**, wherein the plurality of actions comprise obtaining access to the electronic counterpart. - **30**. The method of claim **21**, wherein the plurality of actions comprise storing a copy of the electronic counterpart or a link to the electronic counterpart in a personal archive. - 31. The system of claim 23, wherein the action comprises launching an application. - **32**. The system of claim **23**, wherein the action comprises scrolling to the captured text in the electronic counterpart. - 33. The system of claim 23, wherein the action comprises highlighting the captured text in the electronic counterpart. - **34**. The system of claim **23**, wherein the action comprises placing a bookmark in the electronic counterpart. - 35. The system of claim 23, wherein the action comprises providing access to a product sale or promotion, access to a chat room, creation of or access to a discussion thread, or access to a bulletin board. - **36**. The system of claim **23**, wherein the action comprises obtaining access to the electronic counterpart. - 37. The system of claim 23, wherein the action comprises storing a copy of the electronic counterpart or a link to the electronic counterpart in a personal archive. * * * * * #### UNITED STATES PATENT AND TRADEMARK OFFICE ### **CERTIFICATE OF CORRECTION** PATENT NO. : 8,903,759 B2 Page 1 of 1 APPLICATION NO. : 12/887473 DATED : December 2, 2014 INVENTOR(S) : Martin T. King et al. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: #### Title Page: In Other Publications under item (56): Page 5, column 2, line 72, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 1, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 3, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 7, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 9, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 17, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 19, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 21, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 25, delete "U5" and insert -- US --, therefor. Page 6, column 1, line 27, delete "U5" and insert -- US --, therefor. #### In the Claims: Column 59, line 39, in Claim 6, before "or" delete "and". Column 61, line 24, in Claim 23, delete "document" and insert -- document, --, therefor. Signed and Sealed this Twenty-fourth Day of March, 2015 Michelle K. Lee Director of the United States Patent and Trademark Office Michelle K. Lee