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(57) 	 ABSTRACT 

System(s) and method(s) are provided for data management 
and data processing. For example, various embodiments may 
include systems and methods relating to relatively larger 
groups of data being selected with comparable or better per-
forming selection results (e.g., high data redundancy elimi-
nation and/or average chunk size). In various embodiments, 
the system(s) and method(s) may include, for example a data 
group, block, or chunk combining technique or/and a data 
group, block, or chunk splitting technique. Various embodi-
ments may include a first standard or typical data grouping, 
blocking, or chunking technique and/or data group, block, or 
chunk combining technique or/and a data group, block, or 
chunk splitting technique. Exemplary system(s) and method 
(s) may relate to data hashing and/or data elimination. 
Embodiments may include a look-ahead buffer and determine 
whether to emit small chunks or large chunks based on char-
acteristics of underlying data and/or particular application of 
the invention (e.g., for backup). 
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METHODS AND SYSTEMS FOR QUICK AND 
EFFICIENT DATA MANAGEMENT AND/OR 

PROCESSING 

[0001] This patent application is related to U.S. patent 
application Ser. No. (TBD), titled METHODS AND 
SYSTEMS FOR DATA MANAGEMENT USING MUL-
TIPLE SELECTION CRITERIA to Cezary Dubnicki, Erik 
Kruus, Cristian Ungureanu, and Krzysztof Lichota, also filed 
on Dec. 1, 2006, which is hereby incorporated herein by 
reference for all purposes. 
[0002] This disclosure may contain information subject to 
copyright protection, for example, various psuedocodes, 
code, or computer program(s) listed herein. The copyright 
owner has no objection to the facsimile reproduction by any-
one of the patent disclosure or the patent as it appears in the 
U.S. Patent and Trademark Office files or records, but other-
wise reserves all copyright rights whatsoever. 

BACKGROUND 

[0003] 1. Field of the Invention 
[0004] The present invention relates to the field of data 
processing and data management and, more specifically, to 
methods and systems related to efficient processing for appli-
cations such as data hashing and/or data redundancy elimi-
nation. 
[0005] 2. Description of Related Art 
[0006] Every day more and more information is created 
throughout the world and the amount of information being 
retained and transmitted continues to compound at alarming 
rates, raising serious concerns about data processing and 
management. Much of this information is created, processed, 
maintained, transmitted, and stored electronically. The mere 
magnitude of trying to manage all this data and related data 
streams and storage is staggering. As a result, a number of 
systems and methods have been developed to process data 
more efficiently and to store and transmit less data by elimi-
nating as much duplicate data as possible. For example, vari-
ous systems and methods have been developed to help reduce 
the need to store, transmit, etc., duplicate data from the vari-
ous electronic devices such as computers, computer networks 
(e.g., LANs, intranets, the Internet, etc.), mobile devices such 
telephones, PDA's, disk drives, memory chips, etc. Such 
techniques may be for or include data compression, data 
encryption, and/or data storage. Further, there is a need to 
encrypt data using cryptography, particularly during e.g., data 
transmission. For example, systems and methods have been 
developed that provide for strong (i.e. cryptographic) hash-
ing, and such methods may be incorporated quite naturally 
within applications that use data hashing to accomplish data 
redundancy elimination over insecure communication chan-
nels. Systems and methods have been developed that provide 
for data hashing and/or data redundancy elimination also on 
secure systems. Duplicate data identification and data redun-
dancy elimination in archival streams is one technique to save 
storage space. In various electronic data management meth-
ods and systems, a number of methodologies have been 
developed for data hashing and/or to eliminate redundant data 
from, for example, data storage (e.g., archiving, backup data 
for email or home directories) and data transmission. These 
techniques include various data compression (e.g., zip tech-
niques), data hashing, and cryptography methodologies. 

[0007] Some particular types of hashing may include con-
tent chunking which may include whole file hashing, fixed-
size chunking (blocking), and content-defined chunking. 
Some exemplary techniques for data stream management and 
data processing are disclosed in various articles including C. 
Policroniades and I. Pratt, Alternatives for Detecting Redun-
dancy in Storage Systems Data, in USENIX04: Proceed-
ings of the USENIX Annual Technical Conference (2004), 
pp. 1-14; R. Jain, A Comparison of Hashing Schemes for 
Address Lookup in Computer Networks, IEEE Transactions 
on Communications 40, 1570 (1992), pp. 1-5; N. Jain, M. 
Dahlin, and R. Tewari, TAPER: Tiered Approach for Elimi-
nating Redundancy in Replica Synchronization, Tech. Rep., 
Technical Report TR-05-42, Dept. of Comp. Sc., Univ. of 
Texas at Austin (2005), pp. 1-14; A. Chowdhury, O. Frieder, 
D. Grossman, and M. C. McCabe, Collection Statistics for 
Fast Duplicate Document Detection, ACM Trans. Inf. Syst. 
20, (2002), ISSN 1046-8188, pp. 171-191; F. Douglis andA. 
Iyengar, Application-Specific Delta-encoding via resem-
blance Detection, Proceedings of the USENIX Annual Tech-
nical Conference (2003), pp. 1-23; P. Kulkami, F. Douglis, J. 
LaVoie, and J. Tracey, Redundancy Elimination Within Large 
Collections of Files, Proceedings of the USENIX Annual 
Technical Conference (2004), pp. 1-14); J. Barreto and P. 
Ferreira, A Replicated File System for Resource Constrained 
Mobile Devices, Proceedings of IADIS International Confer-
ence on Applied Computing, (2004), pp. 1-9; T. Denehy and 
W. Hsu, Duplicate Management for Reference Data, Techni-
cal report RJ 10305, IBM Research (2003), pp. 1-14; G. 
Forman, K. Eshghi, and S. Chiocchetti, Finding Similar Files 
in Large Document Repositories, KDD '05: Proceeding of 
the eleventh ACM SIGKDD international conference on 
Knowledge discovery in data mining, ACM Press, New York, 
N.Y., USA, (2005), pp. 394-400; L.You, K. T. Pollack, and D. 
D. E. Long, Deep Store: An Archival Storage System Archi-
tecture, ICDE '05: Proceedings of the 21st International Con-
ference on Data Engineering, IEEE Computer Society, Wash-
ington, D.C., USA, (2005), pp. 1-12; K. Eshghi and IT K. 
Tang, A Framework for Analyzing and Improving Content-
Based Chunking Algorithms, Technical report HPL-2005-
30R1, HP Laboratories (2005), pp.  1-10; P. L'Ecuyer, "Tables 
of Linear Congruential Generators of Different Sizes and 
Good Lattice Structure, in Math. Comput. 68, 249 (1999), 
ISSN 0025-5718, pp. 249-260; A. Tridgell and P. MacKerras, 
"Technical report TRCS-96-05 The Rsync Algorithm", 
Australian National University, Department of Computer 
Science, FEIT, ANU (1996), pp. 1-6; and L. You and C. 
Karamanolis, "Evaluation of Efficient Archival Storage Tech-
niques", in Proceedings of 21s t  IEEE/NASA Goddard MSS 
(2004), pp. 1-6. There are also a number of U.S. patents and 
patent publications that disclosed various related exemplary 
techniques, including U.S. Patent Pub. Nos. 2006/0112264, 
2006/0047855, and 2005/0131939 and U.S. Pat. Nos. 6,658, 
423, and 6,810,398. These references indicate various exem-
plary techniques related to more efficient data processing and 
data management. 

[0008] Various references noted above provide an introduc-
tion to options such as gzip, delta-encoding, fixed-size block-
ing, variable-size chunking, comparison of chunking and 
delta-encoding (delta-encoding may be a good technique for 
things like log files and email which are characterized by 
frequent small changes), and comparisons of fixed- and vari-
able-sized chunking for real data. 
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[0009] However, the known techniques lack certain useful 
capabilities. Typically highly versatile data compression or 
hashing techniques tend to work better on some data types 
than on others (e.g., short data blocks vs. long data blocks), 
for particular applications better than others (e.g., compres-
sion rather than data storage or backup), and at different data 
processing speeds and with different scaling properties with 
respect to the size of data to be processed. Further, various 
hardware and application software have an effect on how well 
a data processing or data management technique may work. 
For example, as noted below, there are some data compres-
sion or redundancy elimination techniques that work very 
well on short blocks of data (e.g., 32k size blocks), or perhaps 
medium size data blocks, but not well on large (e.g. Gb size 
blocks) data blocks. 
[0010] Unfortunately, the known techniques typically do 
not adequately consider the data patterns for particular uses, 
applications or hardware, nor do they efficiently manage the 
size of data segments during processing while identifying a 
high degree of the actual data redundancies in a data set or 
data stream. Known approaches to duplicate elimination have 
difficulty increasing the average size of stored or transmitted 
data segments without severely impacting, the degree of 
duplicate elimination achieved, the time required, and/or the 
scalability of the approach. 
[0011] Therefore, there is a need for a data processing and 
management technique that has reasonable performance and 
is particularly efficient when being used with archive data, 
backup data and/or data that is more efficiently transmitted or 
stored in large blocks or chunks, while achieving a high 
degree of redundancy elimination. Performance goals for 
duplicate elimination may include speed, a combination of 
large average chunk size and a large amount of duplicate 
elimination, and/or scalability to extremely large datasets. 

SUMMARY 

[0012] The present invention is directed generally to pro-
viding systems and methods for data management and data 
processing. For example, various embodiments may include 
systems and methods relating to relatively larger groups of 
data being selected with comparable or better performing 
selection results (e.g., high data redundancy elimination). In 
various embodiments, the system(s) and method(s) may 
include, for example a data group, block, or chunk combining 
technique or/and a data group, block, or chunk splitting tech-
nique. Various embodiments may include a first standard or 
typical data grouping, blocking, or chunking technique and/ 
or data group, block, or chunk combining technique or/and a 
data group, block, or chunk splitting technique. Embodi-
ments may include a look ahead buffer and determine 
whether to emit small chunks or large chunks based on the 
characteristics of underlying data and/or a particular applica-
tion of the invention (e.g., for backup). Further, exemplary 
system(s) and method(s) may relate to a data hashing and/or 
data redundancy identification and elimination technique for 
a data set or a string of data. The invention may be a computer 
implemented invention that includes software and hardware 
for improving data processing efficiently without notably 
reducing the quality of the data processing results. 
[0013] In at least one embodiment, various means to opti-
mize content-defined chunking techniques, functions or 
methods may be provided for archive or backup data streams 
or data sets. Various embodiments may include means to 
accelerate the chunking process using multiple selection cri- 

teria (as described in the related patent application noted 
above). Various embodiments may also include a way to use 
backup cut points, break points, or chunk points and cutting 
levels, break levels or chunk levels to maximize the likelihood 
of generating reproducible cut points, block points, or chunk 
points, given minimum and maximum allowable output data 
group, block, or chunk lengths. The various embodiments 
may be based upon an intuitive model of duplication patterns 
in some types of archive or backup data. Various embodi-
ments may include an amalgamation of data group(s), block 
(s), or chunk(s) so as to re-distribute the data group(s), block 
(s), or chunk(s) to determine improved cut points, block 
points, or chunk point according to different parameters and/ 
or lengths. Such embodiments may be able to increase the 
duplicate elimination ratio (DER) and by judicious heuristics 
not severely decrease the average chunk size. In various 
embodiments, real-time system(s) and method(s) may be pro-
vided which may be able to increase the average chunk size 
without severely decreasing the duplicate elimination ratio 
(DER). 
[0014] These system(s) and method(s) may include split-
ting or breaking apart data groups and may involve optimis-
tically chunking long sequences of "new" data with large 
average chunk size, and using smaller chunks for "new" data 
sufficiently close to what may be duplicate data. In this way 
some types of backup data may be more easily bracket inser-
tions or deletion regions that may correspond to localized 
changes. To do this may require a very limited look-ahead, 
use of a look-ahead buffer, and/or a bounded number of 
queries per unit of input to determine whether or not a pro-
spective chunk has previously been emitted. The queries may 
be done exactly or directly, to a backend storage unit, and/or 
to a local history of limited size maintained in real or virtual 
memory such as, for example, a Bloom filter. 
[0015] Various embodiments of the present invention have 
demonstrated the ability to increase average data group, block 
or chunk size and duplicate elimination ratio. Further, various 
embodiments have been able to achieve equivalent duplicate 
elimination ratio using data groups, data blocks, or data 
chunks, that are approximately 2-to-4 times larger than pre-
viously obtainable. These larger data groups, blocks, or 
chunks may provide a reduction in the metadata cost of stor-
ing data and may result in increased throughput when trans-
mitting data and/or reading or writing to another device, for 
example, a backup appliance (e.g., a disk or network storage 
system). 
[0016] Still further aspects included for various embodi-
ments will be apparent to one skilled in the art based on the 
study of the following disclosure and the accompanying 
drawings thereto. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0017] The utility, objects, features and advantages of the 
invention will be readily appreciated and understood from 
consideration of the following detailed description of the 
embodiments of this invention, when taken with the accom-
panying drawings, and: 
[0018] FIG. 1 is an exemplary overview of a data manage-
ment system that identifies information in an input stream and 
may at times modify that information before producing out-
put, according to at least one embodiment; 
[0019] FIG. 2 is an exemplary overview of a data identifi- 
cation process utilizing a first selection function and then 
utilizing a second modifying selection function which con- 
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sists of a content-defined chunking policy that may amalgam-
ate and/or break apart certain existing chunks, according to at 
least one embodiment; 
[0020] FIGS. 3a and 3b are data streams showing an exem-
plary content-defined chunking technique or policy that may 
add together or amalgamate small chunks into large chunks 
within long stretches of non-duplicate data and/or may not 
amalgamate the small chunks at the edges of the non-dupli-
cate data to better identify potential duplicates within such 
transition regions, according to at least one embodiment; 
[0021] FIGS. 4a and 4b are data streams showing an exem-
plary content-defined chunking technique or policy that may 
break apart or split larger chunks into smaller chunks at the 
edges of the non-duplicate data to better identify potential 
duplicates within such regions, according to at least one 
embodiment; 
[0022] FIGS. 5a and 5b is a flow chart of an exemplary 
content-defined chunking technique or policy that may amal-
gamate small chunks into large chunks and/or border the 
edges of the non-duplicate data with small chunks and/or 
leave small chunks within short regions of non-duplicate 
data, according to at least one embodiment; 
[0023] FIGS. 6a, 6b, and 6c are timing diagrams of an 
exemplary application of a content-defined chunking amal-
gamation technique or policy for a data set or a data input 
stream, according to at least one embodiment; 
[0024] FIGS. 7a and 7b are a flow chart of an exemplary 
content-defined chunking technique or policy that may 
include resynchronization with amalgamating small chunks 
into large chunks, according to at least one embodiment; 
[0025] FIG. 8 is a flow chart of an exemplary content-
defined chunking technique or policy that may split big 
chunks into small chunks, according to at least one embodi-
ment; 
[0026] FIGS. 9a, 9b, and 9c are timing diagrams of an 
exemplary application of a content-defined chunking split-
ting technique or policy for a data set or a data input stream, 
according to at least one embodiment; 
[0027] FIG. 10 is an exemplary application of a backup 
system to which data amalgamation and/or data splitting 
technique or policy may be applied, according to at least one 
embodiment; 
[0028] FIG. 11 shows experimental results of compression 
factor vs. chunk size for various chunking techniques, accord-
ing to at least one embodiment; 
[0029] FIG. 12 shows experimental results of compression 
factor vs. chunk size for various chunking techniques, accord-
ing to at least one embodiment; 
[0030] FIG. 13 shows experimental results of breaking 
apart de-duplication ratio vs. chunk size for various chunking 
techniques, according to at least one embodiment; 
[0031] FIG. 14 shows experimental results of DER vs. 
chunk size for theoretical chunk size limit, according to at 
least one embodiment; 
[0032] FIG. 15 is an exemplary functional block diagram of 
a computing device, according to at least one embodiment; 
and 
[0033] FIG. 16 is an exemplary functional block diagram 
illustrating a network, according to at least one embodiment. 

DETAILED DESCRIPTION 

[0034] System(s) and method(s) for improved data man- 
agement and data processing are provided herein. For 
example, various embodiments of the present invention may 

include systems and methods relating to relatively larger 
groups of data being selected with acceptable, comparable 
and/or better performing selection and/or redundancy elimi-
nation results (e.g., high data redundancy elimination). In 
various embodiments, the system(s) and method(s) may 
include, for example a data group, block, or chunk combining 
technique or/and a data group, block, or chunk splitting tech-
nique. The invention may be applicable for various types of 
data processing, data transmission, and/or data storage, and 
may be particularly useful applications of the invention may 
included, for example, network file systems of several types, 
space-optimized archival of collections of reference files, as 
well as file synchronization, backup data storage, etc. Various 
embodiments below will provide examples for using the 
invention with backup data storage, as one particular exem-
plary application. The invention may be a computer imple-
mented invention that includes software and hardware for 
improving data processing and data maintenance more effi-
ciently, and may not notably reduce the performance of the 
data processing results. The computer implementation may 
include various electronic devices (e.g., PDAs, cellular tele-
phones, GPS, etc.), computers (e.g., PC), storage devices or 
systems, and/or computer networks (LAN, Intranet, Internet, 
etc.), as will be described in more detail below. 
[0035] Typically compression algorithms are geared to 
characteristics of short blocks of data. For example, when 
viewed as bytes or English words, a context-free-grammar 
will typically find fewer and fewer productions involving 
sequences of long length. Reasonable compression may be 
achieved by mechanisms involving a local data model or 
dictionary-based lookup techniques. For example, gzip oper-
ates on short (e.g. 32k) blocks, replacing repeating strings 
with a pointer of form (distance, length). In this case gzip 
achieves redundancy elimination at a local scope, and does 
this using redundant strings whose length can be quite small. 
[0036] In archival data, the situation maybe quite different. 
On real file systems most file accesses are read-only, files tend 
to be either read-mostly or write-mostly, and a small set of 
files generates most block overwrites. Entire files may be 
duplicated, and even when changed, the changes may be 
localized to a relatively small edit region. Here, a compres-
sion scheme must deal effectively with long repeated data 
segments. Even more constraining, the `future' during which 
the data reoccurs may be gigabytes ahead (i.e. the next backup 
run). In this case, duplicate identification and redundancy 
elimination at a global scope, over a much larger input data 
region, may be targeted. Because of the additional overhead 
associated with storing the `location' of these redundant 
strings, the chunks of interest are much larger than those 
targeted by, for example, data compression techniques like 
gzip. 
[0037] Because the fundamental assumption for archival 
data is so different, dictionary-based compression techniques 
may use the procedure referred to as duplicate elimination 
(DE). In duplication elimination, one simply breaks apart an 
input data stream reproducibly, and then stores (or transmits) 
only one copy of any chunks that duplicate a previously 
emitted chunk. 
[0038] Duplicate elimination may be distinguished from 
more aggressive techniques that do considerable additional 
work to improve compressibility. An often used technique in 
more aggressive compression schemes is to invoke resem-
blance detection and some form of delta encoding. Unfortu-
nately, finding maximally-long duplicates or finding similar 
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(or identical) files in large (gigabyte) collections is a very 
involved nontrivial task that typically includes specialized 
algorithms (see, e.g., U.S. Pat. No. 6,658,423). 

[0039] Various embodiments may include a data grouping, 
blocking, or chunking technique and/or data group, block, or 
chunk combining technique, or/and a data group, block, or 
chunk splitting technique. In various embodiments the data 
grouping, blocking, or chunking technique may utilize a stan-
dard or typical data grouping, blocking, or chunking 
approach. Embodiments may include a look ahead buffer and 
determine whether to emit small chunks or large chunks 
based on the characteristics of underlying data and/or a par-
ticular application of the invention (e.g., for backup). Further, 
exemplary system(s) and method(s) may relate to a data hash-
ing and/or data redundancy identification and elimination 
technique for a data set or a string of data. In some exemplary 
embodiments, the present invention will be described as 
applied to data archiving and/or data backup and will be 
configured to perform particularly well in that application. 

[0040] In at least one embodiment, various means to opti-
mize content-defined chunking techniques, functions or 
methods may be provided for archive or backup data streams 
or data sets. Various embodiments may include means to 
accelerate the chunking process using multiple selection cri-
teria (e.g., as described in the related patent application noted 
above). Various embodiments may also include a way to use 
backup cut points, break points, or chunk points and cutting 
levels, break levels or chunk levels to maximize the likelihood 
of generating reproducible cut points, block points, or chunk 
points, given minimum and maximum allowable output data 
group, block, or chunk lengths. Such cut, block or chunk 
points may be generated in a manner expected to have good 
duplicate detection ability. The various embodiments may be 
based upon an intuitive, measured, and/or dynamic model of 
duplication patterns that may occur in some types of archive 
or backup data. 

[0041] In various embodiments, real-time data processing 
and/or data management system(s) and method(s) may be 
provided which may be able to increase the average chunk 
size without severely decreasing the duplicate elimination 
ratio (DER). When considering applying the present inven-
tion to archive or backup data, one assumption for fresh or 
new data may be that it has a high likelihood of reoccurring in 
a future backup run. In that case, using large data groups, 
blocks or chunks may prove most efficient. Thus, the system 
(s) and method(s) of the present invention may involve opti-
mistically chunking long sequences of fresh or "new" data 
with large average chunk(s). This may be combined with the 
use of smaller chunks for "new" data sufficiently close to 
what may be duplicate data. In this way some types of backup 
data may be more easily bracket insertions or deletion regions 
that may correspond to localized changes. To do this may 
require a very limited look-ahead and use of a look-ahead 
buffer, and a bounded number of queries per unit of input to 
determine whether or not a prospective chunk has previously 
been emitted. The queries may be done exactly or immedi-
ately, to a backend storage unit, or to a local history of limited 
size real or maintained in real or virtual memory, for example, 
a Bloom filter. Various embodiments of the present invention 
have demonstrated the ability to increase average data group, 
block or chunk size and maintain an acceptable (or even 
improved) duplicate elimination ratio. Further, various 
embodiments have been able to achieve approximately 
equivalent duplicate elimination ratio using data groups, data 

blocks, or data chunks, that are approximately 2-to-4 times 
larger than previously obtainable. These larger data groups, 
blocks, or chunks may provide a reduction in the metadata 
cost of storing data and may result in increased throughput 
when transmitting data and/or reading or writing to another 
device, for example, a backup appliance (e.g., a disk storage 
system). 
[0042] The present invention may be a computer imple-
mented invention that includes software and hardware for 
improving data processing efficiency without notably reduc-
ing the quality of the data processing results. In at least one 
embodiment, the system(s) and method(s) provided herein 
may be implemented using a computing device, and may be 
operational on one or more computer(s) within a network. 
Details of exemplary computing device(s) and network(s) are 
described in some detail later herein with reference to FIG. 19 
and FIG. 20. Prior reference to those examples may prove 
helpful in developing a better appreciation for various details 
of the present invention. 
[0043] In any case, for ease of understanding, the present 
invention will be explained in more detail for use with hash-
ing functions and/or data redundancy identification and/or 
data duplication elimination. However, one skilled in the art 
would appreciate that the present invention may be applicable 
to other data management and processing systems and meth-
ods including computers with a string of data to process or 
store, wireless communications that have data to transmit, 
Internet and intranet applications, data encryption tech-
niques, etc. In particular, the exemplary embodiments used 
herein to explain the present invention relate primarily to data 
hashing and data duplication elimination. 
[0044] In the case of whole file hashing, hashing may be 
performed by applying a hashing function to all the data of 
entire files. For example, a SHA- 1 hashing function might be 
used and applied to an entire data file. The SHA-1 hashing 
function is computationally complex and may be slow rela-
tive to some other hashing functions. Regardless, in this case, 
for purposes of identifying and eliminating duplication, the 
least amount of data duplication is found and eliminated 
because when a single bit of data changes in a file, the result-
ing hash value will be different than previously saved and the 
full amount of data associate with the revised file will need to 
be transmitted or saved (e.g., when one letter in a text file is 
changed, the entire data representation of the text file and it's 
hash value will change so that it will not be a duplicate of a 
previous version of the same text file). On the other hand the 
hashing is quick because the hashing function need only be 
operated once for an entire file of data. 
[0045] A fixed size data block hashing function may per-
form hashing on portions or blocks of the entire data found in 
a whole file (e.g., a single text file may be broken up into 10 
same sized data blocks of 10K bits), and data blocks may be 
set at a non-overlapping fixed size. For various purposes, the 
speed of blocking or chunking is attractive. The simplest and 
fastest approach is to break apart the input stream into fixed-
size chunks. This approach may be taken in some rsync file 
synchronization techniques. However, there is a potential 
resynchronization problem when using fixed-size chunking; 
consider what happens when an insertion or deletion edit is 
made near the beginning of a file: after a single chunk is 
changed, the entire subsequent chunking will be changed. A 
new version of a file will likely have very few duplicate 
chunks. Once again, for fixed size blocks, a SHA-1 hashing 
function might be applied to each of a fixed size set of blocks 
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(e.g., 10K bits) that makeup a whole file (e.g., 10OK bits). In 
this case, more duplication maybe found because the block of 
data hashed each time is smaller, and a single bit change 
somewhere in a whole file will only result in a change in one 
of the multiple blocks that make up a whole file (e.g., 9 of the 
1010K bit blocks will be duplicates). The smaller the block, 
the better redundancy detection, but a slightly slower process 
may result because the hashing function, for example SHA-1, 
must be run more times for the same amount of data found in 
the whole data file. 

[0046] One way to circumvent the resynchronization prob-
lem is by using content-defined chunking (CDC) techniques; 
in which a local window (e.g., 12-48 bytes long) may be used 
to reproducibly separate the data stream into variable-size 
chunks. Such chunking is probabilistic in the sense one has 
some control over the average output chunk size, or the aver-
age rate of chunk production, given random data input. CDC 
produces chunks of variable size that are better able to restrain 
changes from a localized edit to a limited number of chunks. 
Applications of CDC may include network file systems of 
several types, space-optimized archival of collections of ref-
erence files, and file synchronization. The Low-Bandwidth 
File System (LBFS) was influential in establishing CDC as a 
widely used technique. Usually, the basic chunking algorithm 
is typically only augmented with limits on the minimum and 
maximum chunk size. In some cases, a more complex deci-
sion can be made if one reaches the maximum chunk size or 
if auxiliary special data sequences are found within the input 
data stream. 

[0047] The content defined data chunk hashing may be 
performed by applying a fairly slow and somewhat better 
performing (e.g., more accurate and discriminating) calcula-
tion to identify and generate a value for various chunks of data 
that are defined by their content. One such hashing function 
may include a combination of Rabin fingerprinting and 
SHA-1 hashing function. The Rabin fingerprinting may be 
applied multiple times for overlapping data windows (e.g., 
sliding window) of the data in the data file to determine where 
in a data file the chunk boundaries should be set, based on a 
predetermined boundary point criteria (e.g., a predetermined 
set of bits in the fingerprint being 0's), then the SHA-1 hash-
ing function may be applied to each of the determined data 
blocks (whose size varies based on the underlying data being 
analyzed). Again, each byte of input may enter into some 
SHA-1 hash calculation, as noted before. However, the Rabin 
fingerprinting presents an additional calculation burden (e.g. 
processing time) when compared to fixed size chunking. 
Although this approach is very good at identifying many 
more data redundancies, both of these functions can be time 
consuming and in combination may make hashing and/or 
data redundancy identification and elimination very time con-
suming. In fact, the Rabin fingerprinting function may be 
particularly time consuming for identifying where in particu-
lar the various data block cut or hash point should be in 
attempting to optimize the redundancy data identification 
and/or data elimination. 

[0048] In various embodiments related to data archival or 
backup, a prioritized hierarchy of backup cut points, chunk 
points, or break points, may be used when the maximum 
block or chunk size is reached by using a basic chunking 
technique. This technique may be motivated by a desire to 
increase the likelihood of being able to resynchronize an input 
stream containing localized edits. The technique may be aug-
mented by a chunk combining or amalgamation technique or 

a chunk splitting or breaking technique. It will be illustrated 
herein that such an approach may be used effectively with 
notable improvement over prior system(s) and method(s), by 
considering the statistics of chunking a random data input. 
The basic chunking technique may operate using a content-
defined chunking scheme parameterized by minimum and 
maximum chunk lengths, and may possibly including a 
notion of backup cut points, chunk points, or break points, 
and may be referred to herein as the "baseline" duplicate 
elimination technique or function. 
[0049] One benefit of duplicate elimination (DE) is that for 
many file system-like inputs most of the reproduced content 
may be recognized. Compared with actively searching for 
duplicate region(s) that are optimal in some compression-
related sense, inefficiency in duplicate elimination primarily 
occurs at data groups, blocks or chunks that straddle bound-
aries between new and old data. So as data group, block, or 
chunk size is reduced, generally the efficiency of duplicate-
elimination increases. However this may result in an increase 
in per-chunk (group or block) storage costs (more metadata, 
longer retrieval and re-assembly time, etc.). 
[0050] Duplicate elimination ratio (DER) may be defined 
as the ratio of bytes inputibytes stored (i.e., data input/data 
stored using bytes as the unit of data). Considering data 
archival applications, current data archival systems may 
obtain DER of approximately 5 to 20. One consideration is 
how the per-chunk metadata may affect the desired data 
group, block or chunk sizes for DE purposes. Suppose, for 
example, that one has an overhead of 100 bytes per data 
group, block, or chunk to indicate where and how the data 
group, block or chunk may be stored. If such a system is to 
support a maximum DER of, for example, 50, then the aver-
age data group, block or chunk size should be at least 
50*100=5000 bytes (at this data group, block, or chunk size, 
adding one duplicate still costs you 100 bytes). 
[0051] If per-chunk costs are high, there may be an incen-
tive to produce larger data group, block, or chunk size. For 
this reason, typical duplicate elimination approaches use data 
group, block or chunk sizes in the range of, for example, 
2k-16k, and explicitly do not attempt to remove redundancy 
at the short-string level. Such redundancy may be removed to 
a limited degree by using a fast "local" compression scheme 
on individual chunks. Once again, the efficiency of per-chunk 
(group or block) compression may rise if data groups, blocks, 
or chunks of larger average size may be used. It is worth 
noting however, that this particular benefit is still somewhat 
minor compared to the amount of data storage space saved by 
duplicate elimination, because it occurs only once per stored 
chunk, while the gain due to duplicate elimination occurs 
every time the chunk is encountered, which may be 5-20 
times for typically data. 
[0052] One objective of the present invention maybe to find 
an improved duplicate elimination scheme that may increase 
DER and/or average data group, block, or chunk size relative 
to traditional ("baseline") duplicate elimination approaches. 
Various types of applications of the present invention may 
require developing the particular functions of the invention 
according to unique aspects or characteristics of the data set 
or data stream for that application. For example, two primary 
principles may be applied to making improvements to pro-
cessing and managing streams of archive or backup data: 
Principle 1--Long stretches of new or previously unseen data 
maybe assumed to be good candidates to appear later on (e.g., 
at the next backup run); and Principle 2--Inefficiency that 
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occur around "change regions" straddling boundaries 
between duplicate and new (previously unseen) data may be 
minimized by shorter chunks. In this case, Principle 1 may be 
justified by the fact that the DER for archival or backup data 
often lies in the range of 5-20 for "typical" archive or backup 
data (e.g., home directories, e-mail, etc.). On the other hand, 
Principle 1 may in fact be unjustified for systems with a high 
rollover of content, or content data streams with frequent 
non-duplicate markers inserted. Principle 1 supports using a 
data grouping, blocking, or chunking technique or procedure 
that may produce data groups, blocks, or chunks having large 
average size, particularly when in an extended region of new 
or previously unseen data. 
[0053] From Principle 2 may arise many variants of the 
baseline technique or procedure: variants that differ primarily 
in how the change regions are identified, and how much of the 
new or previously unseen data within a change region is 
grouped, blocked, or chunked at finer granularity. One 
approach may be to begin with an initial technique that may 
first group, block or chunk everything into data groups, 
blocks or chunks containing large amounts of data on aver-
age. Subsequently, blocks containing duplicate and non-du-
plicate data may be identified, and a subset of these blocks 
selected. This selected subset may then use a breaking-apart 
or splitting apart technique to re-chunk the identified regions 
of data at a finer level. One advantage of this approach may be 
that few queries for duplicate chunks may be required. How-
ever, in such an approach, a small insertion/modification may 
invalidate an entire large chunk. If duplicate elimination ratio 
(DER) performance is more important than minimizing the 
number of queries, the amalgamation procedure discussed in 
the next paragraph may be a better choice. By offering more 
flexibility in where big chunks can be situated, a somewhat 
better DER may be obtainable. 
[0054] In what may be a slightly more flexible approach, 
data building-up or amalgamation techniques or procedures 
that may initially chunk at a fine level, and combine small 
chunks into larger ones may be preferable. Such an approach 
may be more flexible by allowing an increased number of 
possibilities for how to form large chunks. The building-up or 
amalgamation grouping, blocking, or chunking technique 
may more finely bracket, and later reutilize, a single inserted/ 
modified chunk. However, as noted above, providing more 
variations or possibilities for how to construct big data 
groups, blocks, or chunks may cost an increased number of 
queries to determine whether different prospective big size 
groups, blocks, or chunks may be duplicates or not. Several 
variants may differ by restricting the number of queries 
required before making a data grouping, blocking or chunk-
ing decision. 
[0055] In general, the more flexibility available for creating 
bigger data groups, blocks, or chunks (e.g., greater amount of 
data per data group, block, or chunk) and in bracketing 
change regions, the better the techniques' or procedures' 
performance may be in terms of simultaneously increasing 
DER and data group, block or chunk size. The exact behavior 
of these techniques, in for example a data archival setting, 
may depend on the distribution of frequency, length of dupli-
cate regions, and the average size of insertion or modification 
"edits" from one backup sequence or session to the next 
backup sequence or session. 
[0056] Various embodiments of the present invention may 
be both fast and scalable, particularly with respect to embodi- 
ments involving the amount of data or number of files to be 

stored. If these requirements are relaxed, various data block-
ing techniques of the present invention may be coupled with 
more complicated approaches. For example, various embodi-
ments may also include storing information as to what par-
ticular sub-chunks a large chunk contains, and producing 
more complicated compression style recipes for storing and 
reconstituting a data stream. Further, the present data group-
ing, blocking, and chunking techniques or functions may be 
coupled with more ambitious techniques such as resemblance 
detection and delta compression. However, various 
approaches based on actively finding "similar" files or chunks 
may be less versatile because they tend to scale linearly or 
worse with the number of stored chunks. The better approach 
may be to use somewhat "passive" techniques, governed 
mainly by the simple Principle 1 and Principle 2 noted above, 
that may operate in constant time, since they may require only 
a bounded number of data group, block, or chunk existence 
queries to make the final data grouping, blocking or chunking 
decision. For use with data archive and backup applications, 
the present invention may use, for example, a target of 32k 
average data group, block or chunk size. This target may be 
useful for obtaining desirable levels of a combination of read/ 
write speed requirements and metadata storage costs (larger 
chunks aid these goals). However, it may also be desirable to 
achieve DE levels comparable with existing duplicate elimi-
nation schemes that typically use chunk sizes averaging only 
4k-8k. 

[0057] The present invention may include a multiple selec-
tion criteria technique for rolling window cut point, break 
point, or chunk point selection. Content-defined chunking 
generally operates by selecting a predetermined set of loca-
tions to break apart an input stream. The chunking is content-
defined if the chunking decision (cut point determination) is 
based upon the data contained within a local window. The 
typical objective is that if the set of windows that produce cut 
points is sufficiently random, then for real data inputs the 
chunk size distribution will still resemble statistical expecta-
tions for random input. To achieve both fast cut point deter-
mination and reasonably good performing cut points (as 
noted in related patent application titled METHODS AND 
SYSTEMS FOR DATA MANAGEMENT USING MUL-
TIPLE SELECTION CRITERIA to Cezary Dubnicki, Erik 
Kruus, Cristian Ungureanu, and Krzysztof Lichota, filed the 
same day herewith, hereby incorporated herein by reference), 
a first fast selection function, e.g., a boxcar sum, and a second 
slower selection process, e.g., CRC32c or SHA-1, may be 
used to determine the initial set of cut points. 

[0058] The two-stage cut, break or block point selection 
process may be selected to leverage the speed of the boxcar 
sum. First, a rather permissive selection may be done using a 
fast boxcar sum to produce a set of potential cut, break or 
block points. From this set, a second (slower) hash function 
may be use to select the final cut, break, or block points. These 
"combined" chunking functions operate at the speed of the 
boxcar hash (typically memory bandwidth-limited) for most 
of the input windows, and only occasionally need to be evalu-
ated with the slower hash function. Since the second hash 
function need not be rolled, any hash function may be used 
with little impact on the speed. In various embodiments, it 
may be beneficial to combined the faster boxcar function 
(e.g., hash function) for an initial selection and follow it with 
a slower CRC32c or SHA-1 function (e.g., hash function) for 
the final selection. Possible chunking cut, block, hash, or 
break points may be determined by consulting the number of 
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least significant zero bits of the hash value. If this number of 
zero bits was 1, then we will say this window generates a cut 
point at level 1. A table of various exemplary cut, break, hash, 
block point functions is illustrated in Table 1 showing various 
speeds achieve during simulation. 

TABLE I 

name code speed MB/s 

boxcar hash+ =b 360 
ro1N-xor hash = ROL(hash, N) 	b 280 
MLCG hash = hash * A ±b 270 
Rabin hash = ((hash< <8)lb) 	A[hash> >N] 195 
xor hash =A[b] 175 
ro1N-xor[ ] hash = ROL(hash, N) 	A[b] 175 
xAdler sl +=b; 

^ 

s2 +=s1 ; hash=sl 	s2 ; 160 
hash=hash> >6; 

Some simple Hash Functions are provided above in Table I. 
Hash is assigned a constant initial value. For each byte in the 
window, hash is modified by adding the next byte value b. The 
hash functions listed here have fast rolling versions. Here A 
and N are hash-specific constants and ROL is a rotate-left 
operation. The xAdler hash is a simplified version of the 
Adler(/Fletcher) hash. Speed values are representative of 
fairly optimized code with a maximal amount of compile-
time constants, and may provide a reasonable indication of 
the hash function speed. The speed tests measure rolling the 
hash and checking for terminal zero bits on several hundred 
megabytes of in-memory random data. 

[0059] In various embodiments, the system(s) and method 
(s) may include generating and maintaining multiple backup 
cut, block, hash, or break points. The parameters commonly 
set for any rolling hash algorithm may be: the minimum 
chunk size, m; the maximum chunk size, M; the chunking 
`level' 1; and the number of backup cut points b. For random 
input data, any window checksum that cuts at level P should 
generate an average chunk size of L=2 1 . The expected average 
data chunk size is the statistically expected rate of selecting 
chunking boundaries when presented with an input stream 
containing random input data. The statistical expectation for 
chunk size s should follow an exponential distribution with 
average value L: 

(1) 
P(s) = 

In any sequence of S input bytes, the probability of seeing 
exactly k cut points should follow a Poisson distribution: 

(S/L,)k e slL 	 (2)  
P(S, k) = 

k! 

The probability of having exactly one cut point (1=1) within 
region S is maximized when S=L. For minimum chunk size 
m, the average chunk size should be around m+L. For a 
maximum chunk size M, a plain level P chunker will hit the 
maximum with probability e (M  m)^ . The exponential dis-
tribution has a rather long tail. If the function is operating in 
a regime where (L=2 1)=(S=M—m), then it may produce a 
maximally-sized chunk e'37% of the time. This is a rather 

large fraction of chunks, and an alternative cutpoint could be 
selected in this case. An easily maintainable alternate is any 
cutpoints that may be encountered at level 1-1 
(and so on). At this first backup level, with an average chunk 
size 

M—m 
m+2d_I  ^gym+ 	2  , 

we are less likely (=10%) to have zero cutpoints. If there is a 
cutpoint at this level, it clearly will afford a better opportunity 
to, for example, resynchronize two input streams than an 
arbitrary cut at the Mth  data byte. By maintaining a few 
backup levels for cut points, the probability of having no 
unique cut point may be decreased. Often 3 backup cut points 
are used in the various experiments described herein and may 
be a practical selection. Having several backup cut, block, 
hash, break points at one level, may enable choosing to cut at 
the earliest or the latest such point. For duplicate elimination 
purposes, cutting at the earliest cut point may typically pro-
vide the best resynchronization. Cutting at a later cut point 
may provide the largest increase in chunk size, at the expense 
of increasing the slack (see, e.g., U.S. Patent Publication No. 
2006/0047855). In various experimental data presented 
herein, the backup cuts, blocks or hash points may be selected 
to yield the longest and largest block or chunk. A more 
detailed discussion of various embodiments of the present 
invention will now be provided with reference to the figures. 
[0060] FIG. 1 provides an exemplary overview of a data 
management system 100 that may identify information in an 
input stream and may at times modify that information before 
producing output, according to at least one embodiment of the 
present invention. An input data stream 110 may be provided. 
The input data stream 110 may be a data stream or data set and 
may be comprised of, for example, one or more electronic bits 
and/or bytes of data. The data stream 110 may come from one 
or more of any number or kinds of equipment or sources (e.g., 
computer programs operating on a PC, a LAN, the Internet, a 
storage disk, a wireless hand held device, a microprocessor 
output, a memory chip, a memory stick, a received transmis-
sion, etc.). A data identification system 120 may identify the 
various bits and/or bytes of electronic information and may 
store them in various memories, buffers, etc., for use (which 
may be included in one or more electronic devices). The data 
identification system may also include various break, block, 
chunk, or hash point determination functions. This data and 
information may be used by a data manipulation system 130. 
In various embodiments, the data manipulation system 130 
may include a data hash function, a duplicate elimination 
function, a hash table, a compression function, etc., and may 
be included in an electronic and/or computer system or net-
work. Although, data from the data stream 110, may or may 
not at times be manipulated, based upon the type and charac-
teristics of the data and the purpose or application of the data 
manipulation system 130. In any case, once the data has been 
through the data identification system 120 and the data 
manipulation system 130, some or all of it may be output as an 
output data stream 140. This output data stream may subse-
quently be further processed, transmitted, stored, etc. in any 
manner typically experience by electronic data. In various 
embodiments of the present invention, the output data stream 
may be archived or stored as backup data on any of a number 
of storage mediums. 
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[0061] Referring now to FIG. 2, an exemplary overview of 
a data identification process 200 is provided. The data iden-
tification process 200 may utilizing, for example, a first selec-
tion function 220 (may include a fast/slow multiple selection 
criteria described above) and then may utilize a second modi-
fying selection function which may consists of a content-
defined chunking policy that amalgamates 230 and/or breaks 
apart 240 certain existing chunks. The process may begin at 
step 210, in which an input data stream is input into a data 
identification system (e.g., system 120). Next, at step 220, a 
content-defined chunking procedure (function, algorithm, 
etc.) maybe applied to the data stream to obtain proposed data 
cut, block, break, or chunk points. The content defined chunk-
ing procedure may include a first fast hash and a second slow 
hash function or procedure (e.g., to the technique disclosed in 
the aforementioned related patent application). Next, one or 
both of steps 230 or 240 may be performed. At step 230, the 
proposed data cut, block, break, or chunk points may be 
modified by applying a block or chunk combining procedure 
to amalgamate existing chunks based on particular rules that 
will be described in more detail below. At step 240, the 
proposed data cut, block, break, or chunk points may be 
modified by applying a block or chunk splitting or breaking-
apart procedure to split existing chunks into smaller chunks 
based on particular rules that will be described in more detail 
below. At step 240, the output data from these procedures may 
determined the cut, block, break or chunk points or emitted 
chunks to be sent to a data manipulation system 130. 
[0062] FIGS. 3a and 3b are data streams for an exemplary 
content-defined chunking policy that may be used in, for 
example, step 230 of FIG. 2. This example policy may: (i) 
amalgamate small chunks into large chunks within long 
stretches of non-duplicate data, while (ii) bordering the edges 
of non-duplicate data regions that are adjacent to duplicate 
data with small chunks by not amalgamating them, and/or 
(iii) re-emitting large chunk(s) which are found to be dupli-
cate(s). In this exemplary case, Principles 1 and 2 may be 
applied for setting up data cut, break, block or chunk points, 
particularly in a situation in which large strings of the data 
stream are likely to be duplicated over time, for example, 
when archiving or backup data is being processed. In FIGS. 
3a and 3b, the data streams 300 and 350, respectively, illus-
trate data chunking procedures that may include a process for 
changing or modifying a chunking proposed for their data 
stream. In FIG. 3a, the initial proposed data stream cut, break, 
block or chunk points at first earlier time chunking time, for 
example a first week, may include an excerpt of the data 
stream shown here as 330. In this case there may be a long 
sequence of, for example, 30 data groups, blocks or chunks 
that may have been produced by a content-defined chunking 
procedure (e.g., 220 in FIG. 2) in which no duplicate data is 
found. The assignment of non-duplicate status is indicated by 
the designation "n". Data chunking procedure 300 may, as 
indicated, determine that each of the 30 individual chunks are 
non-duplicate as well as determining that all amalgamations 
of five contiguous chunks, 301-326, are non-duplicate. In this 
case, the chunk amalgamation policy 230 illustrated in pro-
cedure 300 may choose to form large chunks by amalgamat-
ing consecutive groups of five small chunks, resulting in an 
output stream 340 that consists of, for example, six large 
chunks 341-346. 

[0063] In FIG. 3b, which may correspond to, for example, 
a second later time, the proposed chunking of an excerpt of 
the input stream 351 once again contains 30 chunks. As 

shown data stream 351 may include a plurality of duplicate 
data blocks or chunks, e.g., the first five chunks 352, consid-
ered together, and final five chunks 357, considered together, 
may be duplicates (designated as `d' and referred to as large 
duplicates). Since it advantageous to retain duplicate large 
chunks, the small chunks comprising 352 and 357 may be 
chosen to be amalgamated within the output stream 380, 
producing large chunks 390 and 391. The two groups of 
duplicates 352 and 357 may bound a string of twenty data 
blocks or chunks 353-356 that have been assigned, for 
example, non-duplicate status. Within blocks 353-356 the "n" 
designates a failure to find duplication either as individual 
chunks or as any group of five consecutive chunks. Principle 
1 suggests that this large amount of non-duplicate data 
between chunk points 360 and 370 may be grouped together 
using a chunk combining or amalgamating procedure. How-
ever, based on Principle 2 (not producing large chunks which 
straddle or lie sufficiently close to boundaries between data 
considered to be duplicate and data which is non-duplicate), 
it may be best to partition non-duplicate region 360-370 to 
include initial and final buffer zones of small chunks. If the 
change region 360-370 is sufficiently small (e.g., a small 
number of consecutive data groups or "short hole" of non-
duplicate data), the procedure may choose to emit the entire 
region of contiguous chunks without performing any amal-
gamation. Alternatively, as presented in the exemplary output 
stream 380, the combining or amalgamation procedure may 
choose to emit the region from 360-370 as three large chunks 
395, 396 and 397 preceded by two smaller chunks 381 and 
382, and followed by three smaller chunks 383, 384 and 385. 
As such, the output stream 380 may contain a transition 
region of non-amalgamated small chunks after transitions 
from regions considered to be duplicate to regions considered 
non-duplicate, and/or before transitions from non-duplicate 
to duplicate regions. A process incorporating procedures 300 
and 350 to produce the effects shown by output streams 320 
and 380 may result in improved performance for data streams 
typical of, for example, archival applications, Internet com-
munications, etc., by maintaining an acceptable amount of 
duplicate detection and/or increasing the average size of 
stored or transmitted data segments. 

[0064] Referring to FIGS. 4a and 4b, data streams 400 and 
450 are provided showing an exemplary content-defined 
chunking policy that may break apart or split larger chunks 
near the start and end of contiguous non-duplicate data which 
is bordered by duplicate data so as to better identify potential 
duplication within such regions, according to at least one 
embodiment of the present invention. Data streams 400 and 
450 illustrate data chunking procedures that may include a 
process (corresponding to, for example, step 240 of FIG. 2) 
for changing or modifying the proposed chunkings 410 and 
460, so as to produce exemplary outputs 420 and 480. 
[0065] In FIG. 4a, the output of procedure 220 at a first 
earlier time, for example a first week, may include an excerpt 
of the data stream shown here as 410. In this case there may 
again be a sequence of data groups, blocks or chunks which 
have been classified as non-duplicates (designated by "n"). 
Six such chunks are displayed in 410. The chunking modifi-
cation policy may choose to present these same chunks in its 
output stream 420, anticipating that these large blocks may 
have a good chance for reoccurring later, according to Prin-
ciple 1. In FIG. 4b, the output of procedure 220 of FIG. 2 at a 
second later date, for example a second week, may include an 
excerpt of the data stream 460 in which, this time, some data 
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groups, blocks or chunks have been determined to be dupli-
cates (461 and 466, designated "d"), while others 462-465 
have been determined to be non-duplicate (designated as 
"n"). A chunk modification policy may decide to pass dupli-
cate chunks 461 and 466 unmodified to the output stream, 
since generally, large duplicate output chunks are desirable. 
In this case, the region between cut, break, block or chunk 
points 470 and 475 consists entirely of groups, blocks or 
chunks having been identified as non-duplicate. A chunking 
modification policy, having determined that point 470 begins 
a non-duplicate region, may choose to split one initial chunk, 
462, using an alternate procedure producing shorter average 
chunk lengths, while not modifying a region of interior non-
duplicate chunks. This same policy, having determined that 
point 475 initiates a region of duplicates following a region of 
non-duplicates may also decide to split one preceding chunk, 
465, with, for example an alternate procedure producing 
shorter average chunk lengths. As shown, the initial non-
duplicate data block 462 may produce a plurality of smaller 
blocks or chunks 481 -485, while the final non-duplicate data 
block may produced the four blocks, 491-494, in the output 
stream. In this way, the smaller chunks may be better at 
catching more duplicate data blocks since this policy may be 
able to better demarcate the start and end of change regions 
within the original data stream 460. For example, as shown in 
FIG. 4b the output stream may in fact duplicate blocks 481, 
482 and 494. 

[0066] One skilled in the art will recognize that specific 
implementations of procedures related to data streams 300, 
350, 400 and 450 may vary in details of how duplicate and/or 
non-duplicate regions are specifically defined, how long the 
buffer zone of small chunks may be chosen to be, the size of 
a small chunk or a big chunk, etc. Small (or smaller) chunks 
may have typical sizes of approximately 2-18k, and for ran-
dom data inputs may exhibit a chunk size distribution resem-
bling an exponential distribution. Larger or big chunks in a 
simple amalgamation embodiment may, for example, be 
always constituted by exactly eight consecutive small chunks, 
with a correspondingly larger range of chunk sizes and may 
average a size of approximately 16k-144k (e.g., 8 times 
larger), and may exhibit a narrower chunk size distribution 
narrower than exponential when presented with random input 
data. 

[0067] In various implementations, a first segmentation 
procedure may be followed by a second segmentation proce-
dure, and the expected average data group size of the first data 
segmentation procedure and the second segmentation proce-
dure may be different. The expected average data group size 
is the statistically expected rate of selecting chunking bound-
aries when presented with an input stream containing random 
input data. The expected data group size may be related to a 
selection criterion, as explained in the related patent applica-
tion METHODS AND SYSTEMS FOR DATA MANAGE-
MENT USING MULTIPLE SELECTION CRITERIA to 
Cezary Dubnicki, Erik Kruus, Cristian Ungureanu, and 
Krzysztof Lichota or as suggested by equation (1) the theo-
retical expectation for chunk size s (in absence of min or max 
chunk size limitations) as indicated above. Some implemen-
tations may prefer to utilize the actual length or amount of the 
underlying data stream to govern amalgamation limits, or 
various limits related to assignment of duplicate or non-du-
plicate status, or limits related to how much data should get 
amalgamated, rather than using "chunks" as the unit of cal-
culation, as in FIG. 3. Other implementations may include 

several ways or degrees to which the small chunks may be 
amalgamated. Some implementations may, additionally or 
alternatively, choose to use further (and indeed substantially 
different) characteristics of the input stream to guide the 
decision-making processes between small chunks and large 
chunks. For example, implementations may include inputs to 
guide chunking policies 230 and/or 240 that arise from sta-
tistical models of the previous data inputs and/or outputs to 
guide transitions between chunking procedures of different 
expected output chunk lengths. Other useful inputs to such 
policies may include compressibility estimates based, for 
example, on prior history or fast entropy estimation methods 
(e.g. Renyi entropy). 

[0068] Some implementations may also include the possi-
bility of setting or dynamically changing the chunking size 
based on the current status of results relative to present dupli-
cation elimination goals. For example, if the procedure is 
achieving duplicate elimination goals, then the procedure 
may switch to chunking new non-duplicate data with a larger 
average chunk size and also reduce metadata. Alternatively, if 
the duplicate elimination goals are not being met, the proce-
dure may switch to large chunk sizes that are a little bit 
smaller. Some implementations may also include the possi-
bility of setting or dynamically changing the chunking size 
based on the current status of results relative to the average 
data group size goals. If the average chunk size of the output 
stream of the procedure is exceeding goals, then, for example, 
the procedure may amalgamate a lesser number of chunks in 
regions of completely new data if it is able to later properly 
handle duplication queries for consecutive numbers of a vari-
able number of smalls chunks (up to some max). Some imple-
mentations may also include the possibility of setting or 
dynamically changing the chunking size based on the current 
status with respect to estimated or actual compressibility of 
small and/or larger data groups or on the theoretical or experi-
mental model of duplication elimination characteristics. If an 
assessment of previous performance, for example, shows that 
at a small-chunk level, for example, entering a non-duplicate 
region is quite likely to involve an initial sequence of small 
chunks the first three of which are particularly likely to be 
duplicate, while the next 8 or more are particularly likely to be 
non-duplicate, then the procedure might adjust the number of 
small chunks in border regions to, for example, three small 
chunks (rather than, e.g., four or two). Some implementations 
may also include the possibility of applying second data 
segmentation procedure multiple times so as to further 
improve the ultimate chunk size and/or DER. For example, 
the procedure may be modified for splitting apart; suppose an 
initial small chunking begins with a finer-grain extension of 
the region with duplicate status, then the first non-duplicate 
region could conceivably be split at even finer scale to more 
closely terminate the region of duplication. Such a process 
may be terminated when the metadata costs associated with 
the increased number of smaller and smaller chunks out-
weighed the DER benefits (as may be based on predetermined 
or dynamically varying goals). 

[0069] Note that the input data streams for FIGS. 3a, 3b, 4a 
and 4b may correspond to identical excerpts of an original 
data stream. In this case, it may be instructive to consider and 
compare the principle sources of additional processing effort 
required to assign duplicate/non-duplicate status. In FIGS. 3a 
and 3b, the number of queries for duplicate status may be 
bounded above by two queries per small chunk (maximally 
one query for a chunk duplication and one query for a dupli- 
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cation of five contiguous chunks). So in the case of identical 
input streams 330 and 410, the querying effort is bounded by 
30x2=60 for FIG. 3a, and by 6 in FIG. 4a. Other implemen-
tations of an amalgamation process may permit variable-
sized big chunks, in which a number of contiguous chunks 
may be amalgamated up to some predetermined maximum, or 
up to some predetermined maximum amount of underlying 
data. This still yields a constant amount of querying effort per 
unit of input, but the constant is larger. These considerations 
may have practical impact for system design. In fact, while 
numerous procedures are capable of producing outputs 
resembling output streams 380 and 480 when presented with 
contiguous regions of data which has been assigned non-
duplicate status, a useful rule of thumb is that procedures 
which have more "flexibility" (i.e. allow a larger number of 
positions and/or lengths for amalgamated chunks) may 
achieve a higher amount of duplicate elimination. This per-
formance benefit may need to be balanced with the cost of the 
additional queries. Note, that this cost is roughly constant, 
regardless of the scale of data previously stored, whereas 
some techniques that include resemblance detection and delta 
compression in an archiving system may scale linearly (or 
worse) with the amount of data stored. The small additional 
cost and excellent scalability of the proposed systems and 
methods may make these approaches preferable to other 
available systems and methods of improving the duplicate 
elimination and speed of data processing for data archival, 
data communication systems, etc. 

[0070] Each of the aforementioned procedures maybe per-
formed using a relatively simple process, software, or algo-
rithm, and thus would require only a small amount of pro-
cessing time with the potential for increasing duplicate data 
recognition and improving the DER. Further, each procedure 
may in various embodiments be implemented using a short or 
small look ahead buffer. This look ahead buffer may even be 
helpful at assisting in resynchronization if a small amount of 
data is inserted within a large stream of duplicate data. In the 
case the look ahead buffer does not identify a shift in the 
present data stream from prior data streams, a major resyn-
chronization maybe required. This resynchronization maybe 
predetermined based on the particular type of data in the data 
stream being processed. Various embodiments may also 
include one or more backup cut, break, block, or chunk points 
to assist in resynchronization. In any case, a plurality of more 
detailed flow charts and examples will now be provided to 
further describe some embodiments of the present invention. 
It should also be noted that while various large and small 
chunks have been drawn with equal lengths in the examples 
shown in FIGS. 3a, 3b, 4a, 4b, individual chunks may include 
a varying numbers of bytes of the underlying data stream, and 
that actual lengths of data streams associated with what are 
referred to as small and large chunks may vary from one 
small/large chunk to the next such chunk. For example, some 
large chunks, whose data content is strictly larger than that of 
any of the underlying non-amalgamated chunks, may be 
smaller than individual small chunks produced in other 
regions of the input data stream. Thus, the chunks may actu-
ally be variable-sized and not fixed-size as might be sug-
gested by the figures. 
[0071] Considerably more flexibility in generating variably 
sized chunks may be afforded by running a procedure that 
creates smaller chunks first, followed by chunk amalgam-
ation into big chunks. There are many possible ways to make 
the amalgamation decision, and one important difference is 

the number of queries per small chunk that may be needed to 
make chunking decisions. For example, a simple approach 
may be to make large or big chunks generated by the concat-
enation of a fixed or given number, N, of consecutive small 
chunks. This approach may bound the number of big chunk 
existence queries to, for example, 1 per small chunk. Another 
possibility may be to allow large chunks to be 2 ... N 
consecutive small chunks, with a higher bound for the number 
of queries required. Using information about non-emitted 
smalls (i.e. the small chunks that were not emitted because 
they were part of some big chunk) maybe less desirable, since 
there may be a large amount of small chunk "metadata" that 
needs to be stored somehow. 

[0072] A simple exemplary chunk amalgamation proce-
dure or algorithm may be, for example: 

1 void process( SmallChunkLookAheadBuffer buf[O to 2k-1]) 
2 if( isDupBig(bufl0]) ) emit big @ buf[O to k-1]; 
3 else if( (then=findDupBigStarting(buf[1 to k]) ) 
4 	emit smalls until then, followed by a big; 
5 else if( isPrevDupBig) emit k smalls; 
6 else emit big @ buflO to k-1] 
7} 

Such a procedure admits flexibility by allowing various rea-
sonable ways in which component steps are precisely defined. 
Here, `buf' may refer to a look-ahead buffer containing, for 
example, up to 2k-1 chunks. The `is DupBig(bufj0])' may 
check to see whether a first small chunk may be part of a 
previously emitted amalgamated chunk. In various embodi-
ments, this may require checking whether a single large 
chunk encompassing bufj0] to buf[k-1] is a duplicate, for 
example. If so bufj0 ... k-1] may be re-emitted as a large 
chunk once again ('emit big@bufj0 to k-1]'). In other 
embodiments, is DupBig(bufj0]) may check for duplicate 
status by querying whether any amalgamation buf[O ... N] 
has been previously emitted for some N ink-1 to 2, and if so, 
may emit an amalgamated (big) chunk encompassing buf[0] 
to buf[N]. The `findDupBigStarting' may invoke a procedure 
similar to `is DupBig(bufj0])' except that it may sequentially 
invoke is DupBig starting at increasing offsets within the 
lookahead buffer, buf. If such a forward-looking longest, first 
amalgamated chunk is found to have been previously emitted, 
then in line 4 smalls may be emitted beginning at bufj0], 
followed by the first amalgamated chunk found by line 3. The 
`is PrevDup' queries a state variable for the duplication status 
of the chunk that was emitted immediately before bufl0]. It 
may be implemented as a state variable that reflects the 
assigned duplication status of the previous emission and/or 
by storing true if the previous emission was an amalgamated 
chunk consisting of more than one small chunk. Other 
embodiments may instead assign a `true' duplication status to 
any duplicate previous emission (one or more small chunks). 
Additionally, big chunk formation criteria may include 
restriction of big chunks to ones exceeding a predetermined 
threshold of the size of the data stream underlying the big 
chunk. For simplicity we will henceforth speak of big chunks 
determined solely by a count of the small chunks during an 
amalgamation procedure. With fixed-size big chunks the pro-
cess may make at most 1 query per small chunk, while for 
variable-size big chunks it may make up to k-1 queries per 
small chunk. Other variations include modifying the notion of 
whether a single small chunk is considered sufficient to gen- 
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erate a (logical) duplicate/non-duplicate transition. If such an 
algorithm were written without a look ahead buffer, then the 
findDupBigStarting O predicate is unavailable. In such cases, 
it may be possible for two duplicate input streams to remain 
out-of-synch indefinitely. This may be avoided by introduc-
ing resynchronization cut points: whenever the cut point level 
of a small chunk exceeds some threshold, that small chunk 
may be allowed to terminate a big chunk, but may not be 
allowed to occur elsewhere in the interior of a big chunk. In 
this fashion, two duplicate input streams may be forcibly 
resynced after a resynchronization cut point in algorithms 
that do not have sufficient look ahead to do so spontaneously. 

[0073] Referring now to FIGS. 5a and 5b, an exemplary 
flow chart 500 of a content-defined chunking policy is pro-
vided that may utilize a look-ahead buffer of fixed size to 
amalgamate or combine small chunks into large chunks 
within long stretches of new non-duplicate data, while bor-
dering the edges of the non-duplicate data with small chunks 
and leaving small chunks within short regions of non-dupli-
cate data. First, at 503, an input buffer or look ahead buffer 
includes a number of smaller chunks. Then, at decision step 
506, it is determined whether there are enough small chunks 
in the buffer to emit a bigger chunk of data. If not, then at step 
509 1 small chunk may be emitted from the buffer and at step 
524, the buffer may be refilled with the next chunk after the 
last emitted chunk. If there are enough small chunks in the 
buffer to emit a big chunk, then at decision step 512, it is 
determined whether the buffer starts with a previously emit-
ted big chunk. If yes, at step 515, that big chunk may be 
emitted, followed by refill buffer step 524. If not, then at step 
518 a decision step determines if the buffer has a previously 
emitted big chunk close enough to the buffer start to prevent 
emitting a big chunk. If so, then at step 521, the process will 
emit small chunks between the buffer start and the big chunk 
and emit that big chunk, followed by refill buffer step 524. 
However, if the buffer does not have a previously emitted big 
chunk close enough to the buffer start to prevent emitting a 
big chunk, then the process proceeds to step decision step 
556. At decision step 556, it is determined whether the buffer 
has enough small chunks, following the point at which no 
previously emitted big chunk could possibly be close enough 
to the buffer start to prevent emitting a big chunk (buffer start 
plus big chunk length), to permit the construction of a follow-
ing big chunk. If not, then at step 568, the process determines 
if the last chunk emitted was a previously emitted big chunk. 
If this is so, then at step 571, the process may emit 1 small 
chunk, followed by refill buffer step 524. If the answer to step 
568 is no, then at step 565 a new big chunk is emitted. If at step 
556 it is determined that a following big chunk can be con-
structed, then decision step 559 is performed. At decision step 
559, it is determined whether the last chunk emitted at step 
524 was a previously emitted chunk or if the following big 
chunk was previously emitted. If the answer to decision step 
559 is no, then at step 565 a new big chunk is emitted. If the 
answer at decision step 559 is yes, then at step 562 all small 
chunks are emitted before the next possible big chunk is 
determined. In either case, the refill buffer step 524 follows. 

[0074] Referring to FIGS. 6a, 6b, and 6c, an exemplary 
illustration 600 of the application of a content-defined chunk-
ing amalgamation policy to a data input stream, according to 
at least one embodiment. First, an input data stream 605 is 
shown to consist of an exemplary series of small chunk hash 
values, where each exemplary hash value is represented by an 
individual character. The exemplary input data stream 605 

would be the result of the application of a first standard 
content defined chunking algorithm. The second modifying 
selection function consisting of a content-defined chunking 
amalgamation function according to FIGS. 5a and 5b is then 
applied to the exemplary input data stream 605 by iteratively 
looking at the input data stream 605 with a look ahead buffer 
610. The look ahead buffer 610 has an exemplary capacity of 
eight (8) small chunks. In this example, the chunking policy 
illustrated restricts a prospective big chunk to consist of 
exactly four small chunks. Initially the look ahead buffer 610 
is filled with the small chunks, or more specifically the hash 
values of those chunks, at the beginning of the input data 
stream 605, "abcdefgh." After each decision to emit either 
amalgamated small chunks or un-amalgamated small chunks, 
the look ahead buffer 610 is filled up to capacity beginning 
with the chunk after the last emitted chunk. For example, 
when the look ahead buffer 610 initially contains the eight (8) 
small chunks "abcdefgh" at the start of the input data stream 
605, the small chunks "a," "b," "c," and "d" are amalgamated 
into a new big chunk "abcd" 615 and emitted as such because 
neither these first small chunks nor the next possible big 
chunk "efgh" 620 have ever been seen before. After the look 
ahead buffer 610 is refilled starting with the next chunk "e" 
after the last previously emitted chunk "abcd" 615, the small 
chunks "e," "f," "g," and "h" are also amalgamated into a new 
big chunk "efgh" 620 and emitted as such because neither the 
last chunk emitted, "abcd" 615, nor the next possible big 
chunk "ijkl" 625 are duplicate big chunks. After the look 
ahead buffer 610 is refilled starting with the next chunk "i" 
after the last previously emitted chunk "efgh" 620, the small 
chunks "i," "j," "k," and "1" are also amalgamated into a new 
big chunk "ijkl" 625 and emitted as such because neither the 
last chunk emitted, "efgh" 620, nor the next possible big 
chunk "mnop" are duplicate big chunks. After the lookahead 
buffer 610 is refilled starting with the next chunk "m" after the 
last previously emitted chunk "ijkl" 625, the small chunks 
"m," "n," "o," and "p" are not amalgamated into a new big 
chunk and are all emitted as small chunks "m," "n," "o," and 
"p" 630 because while the last chunk emitted "ijkl" 625 is a 
non-duplicate big chunk, the next possible big chunk "efgh" 
640 has been seen before at 620. 
[0075] Referring now to the continuation of this exemplary 
conceptual illustration 600 in FIG. 6b, after the look ahead 
buffer 610 is refilled starting with the next chunk "e" after the 
last previously emitted chunk "p" 630, the small chunks "e," 
"f," "g," and "h" are amalgamated into a new big chunk 
"efgh" 640 and emitted as such because these chunks, as the 
start of the look ahead buffer 610, constitute a previously 
emitted big chunk as seen before at 620. After the look ahead 
buffer 610 is refilled starting with the next chunk "i" after the 
last previously emitted chunk "efgh" 640, the small chunks 
"i," "j," "k," and "1" are amalgamated into a new big chunk 
"ijkl" 645 and emitted as such because these chunks, as the 
start of the look ahead buffer 610, constitute a previously 
emitted big chunk as seen before at 625. After the look ahead 
buffer 610 is refilled starting with the next chunk "a" after the 
last previously emitted chunk "ijkl" 645, the small chunks 
"a," "a," "a," and "b" are not amalgamated into a new big 
chunk and are all emitted as small chunks "a," "a," "a," and 
"b" 650 because while the next possible big chunk "bbcd" has 
never been seen before, the last chunk emitted "ijkl" 645 was 
a big chunk that had been seen before at 625. After the look 
ahead buffer 610 is refilled starting with the next chunk "b" 
after the last previously emitted chunk "b" 650, the small 
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chunks "b" and "b" are not amalgamated into a new big 
chunk, being emitted as small chunks "b" and "b" 655, while 
the small chunks "a," "b," "c," and "d" are amalgamated into 
a new big chunk "abcd" 655 and emitted as such, because the 
previously emitted big chunk "abcd" 655 was sufficiently 
close to the start of the look ahead buffer 610 to prevent the 
emission of the potential big chunk "bbab." 

[0076] Referring now to the continuation of this exemplary 
conceptual illustration 600 in FIG. 6c, after the look ahead 
buffer 610 is refilled starting with the next chunk "k" after the 
last previously emitted chunk "abcd" 655, the small chunks 
"k," "1," m," and "n" are not amalgamated into a new big 
chunk and are all emitted as small chunks "k," "1," "m," and 
"n" 665 because while the next possible big chunk "opij" has 
never been seen before, the last chunk emitted "abed" 655 
was a big chunk that has been seen before at 615. After the 
look ahead buffer 610 is refilled starting with the next chunk 
"o" after the last previously emitted chunk "n" 665, the small 
chunks "o" and "p" are not amalgamated into a new big chunk 
and emitted as small chunks "o" and "p" 670, while the small 
chunks "i," "j," "k," and "1" are amalgamated into a new big 
chunk "ijkl" 670 and emitted as such, because the previously 
emitted big chunk "ijkl" 670 was sufficiently close to the start 
of the look ahead buffer 610 to prevent the emission of the 
potential big chunk "opij ." After the look ahead buffer 610 is 
refilled starting with the next chunk "x" after the last previ-
ously emitted chunk "ijkl" 670, the small chunks "x," "x," "y," 
and "y" are not amalgamated into a new big chunk and are all 
emitted as small chunks "x," "x," "y," and "y" 675 because 
while the next possible big chunk "zzac" has never been seen 
before, the last chunk emitted "ijkl" 670 was a big chunk that 
had been seen before at 625. After the look ahead buffer 610 
is refilled starting with the next chunk "z" after the last pre-
viously emitted chunk "y" 675, the small chunks "z," "a," and 
"c" are amalgamated into a new big chunk "zzac" 680 and are 
emitted as such because the look ahead buffer 610 has begun 
to run low on data (so that another big chunk could not be 
emitted in the next iteration if the look ahead buffer 610 
started with the "a" after the potential big chunk "zzac") and 
the last chunk emitted "y" 675 was not a previously emitted 
big chunk. Finally, after the look ahead buffer 610 is refilled 
with the remaining small chunk "a" after the last chunk emit-
ted "zzac" 680, the small chunk "a" cannot be amalgamated 
into a big chunk because there are no chunks to amalgamate 
it with and is emitted as a small chunk "a" 685. Therefore, 
applying the second modifying selection function (which 
consists of a content-defined chunking amalgamation func-
tion according to FIGS. 5a and 5b) to the input data stream 
605 has resulted in the modification of chunks provided from 
the first standard chunking algorithm to be big within long 
regions of non-duplicate data, small at the borders of long 
regions of non-duplicate data, and small within short regions 
of non-duplicate data. 

[0077] Considering resynchronization possibilities in 
pathological cases leads to an option to never allow a big 
chunk to straddle some high level of cut, block, break or 
chunk point. This option may eventually force resynchroni-
zation in a duplicate stream that otherwise theoretically could 
remain unsynchronized for a long period simply because the 
big chunks were always chosen in an offset fashion. FIGS. 7a 
and 7b provides an exemplary flow chart 700 of a content-
defined chunking policy that utilizes a look-ahead buffer of 
fixed size as well as backup (e.g. resynchronization) chunk 
points to amalgamate small chunks into large chunks within 

long stretches of non-duplicate data as long as the large chunk 
would not straddle a resynchronization point, while also bor-
dering the edges of the non-duplicate data with small chunks 
and leaving small chunks within short regions of non-dupli-
cate data, according to at least one embodiment. First, at 703, 
an input buffer or look ahead buffer includes a number of 
smaller chunks. Then, at decision step 709, it is determined 
whether there are enough small chunks in the buffer to emit a 
bigger chunk of data. If not, then at step 712, one small chunk 
may be emitted from the buffer and at step 706, the buffer may 
be refilled with the next chunk after the last emitted chunk. If 
there are enough small chunks in the buffer to emit a big 
chunk, then at decision step 715, it is determined whether a 
resynchronization point be crossed if a big chunk is emitted. 
If not, then the process proceeds to step 718, to determine 
whether the buffer starts with a previously emitted big chunk. 
If yes, a resynchronization point would be crossed, then the 
process proceeds to step 712 and one small chunk may be 
emitted, followed by refill buffer step 706. If yes, at step 515, 
that big chunk may be emitted, followed by refill buffer step 
706. If at step 718, it is determined that the buffer starts with 
a previously emitted big chunk, the process proceeds to step 
721 to emit that big chunk, followed by refill buffer step 706. 
If not, then at step 724 a decision step determines if the buffer 
has a previously emitted big chunk which does not cross 
resynchronization points and is close enough to the buffer 
start to prevent emitting a big chunk. If so, then at step 727, the 
process will emit small chunks between the buffer start and 
the big chunk and emit that big chunk, followed by refill 
buffer step 706. However, if the buffer does not have such a 
previously emitted big chunk close enough to the buffer start 
to prevent emitting a big chunk, then the process proceeds to 
decision step 760. At decision step 760, it is determined 
whether the buffer has enough small chunks, following the 
point at which no previously emitted big chunk could possi-
bly be close enough to the buffer start to prevent emitting a big 
chunk (buffer start plus big chunk length), to permit the 
construction of a following big chunk that would not cross 
resynchronization points. If not, then at step 780, the process 
determines if the last chunk emitted during step 706 was a 
previously emitted big chunk. If this is so, then at step 785, the 
process may emit 1 small chunk, followed by refill buffer step 
706. If the answer to step 780 is no, then at step 775 a new big 
chunk is emitted. If at step 760 it is determined that a follow-
ing big chunk that does not cross resynchronization points 
can be constructed, then decision step 765 is performed. At 
decision step 765, it is determined whether the last chunk 
emitted was a previously emitted chunk or if considering 
emission of a big chunk, the following big chunk was a 
previously emitted big chunk. If the answer to decision step 
765 is no, then at step 775 a new big chunk is emitted. If the 
answer at decision step 765 is yes, then at step 770 all small 
chunks are emitted before the following big chunk is deter-
mined. In either case, the refill buffer step 706 follows. 

[0078] An example of a simple chunk-splitting procedure 
or algorithm that re-chunks a non-duplicate big chunk either 
before or after a duplicate big chunk is detected is shown 
below. 

1 for (each big chunk) ( 
2 if (isBigDup) emit as big; 
3 else if (isPrevBigDup I I isNextBigDup) 
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-continued 

4 	rechunk as smalls; // dup/nondup transition 
5 else emit as big; 
6} 

Here the primary pass over the data may be done with a large 
average chunk size, and a single non-duplicate data chunk 
after or before a duplicate big chunk may be re-chunked at 
smaller average block size. The process may modify such an 
algorithm to detect more complicated definitions of dupli-
cate/non-duplicate transitions; e.g., when N non-duplicates 
may be adjacent to D duplicates, re-chunk R big chunks with 
smaller average size. Alternatively, the process could work 
with the actual lengths of the chunks to determine and deal 
with duplicate/non-duplicate transition points. 
[0079] Referring to FIG. 8, an exemplary flow chart of a 
content-defined chunking policy 800 that utilizes a look-
ahead buffer of fixed size to split big chunks into small chunks 
within short stretches of non-duplicate data, while leaving big 
chunks within long stretches of non-duplicate data and split-
ting big chunks into small chunks along the borders of the 
long stretches of non-duplicate data, is provided. At step 805, 
an input buffer may include a plurality of big chunks. Then at 
decision step 815, the process may determine if the buffer 
starts with a previously emitted big chunk. If yes, at step 820 
that big chunk is emitted, followed by the buffer being refilled 
starting with the next chunk after the last emitted chunk, at 
step 810. If not, then the process proceeds to decision step 
825. At step 825, the process determines if the last chunk 
emitted was a previously emitted big chunk or is the next 
chunk a previously emitted big chunk. If either of these are 
true, then the process may proceed to step 830 and the large 
new chunk is split or re-chunked as a plurality of smaller 
chunks and they are emitted between the buffer start and the 
next big chunk. This step is followed by buffer refill step 810. 
However, if the answer to the question at step 825 is no, then 
at step 835 the chunk is emitted as a big chunk, followed by 
buffer refill step 810. 
[0080] Referring to FIGS. 9a, 9b, and 9c, an exemplary 
illustration 900 of the application of the claimed second 
modifying selection function, which consists of a content-
defined chunking splitting function according to FIG. 8, to an 
input data stream is provided, according to at least one 
embodiment of the present invention. Referring now to FIGS. 
9a, 9b, and 9c, representing the conceptual illustration 900, 
935, and 960, an input data stream 905 is shown to consist of 
an exemplary comma-delimited series of big chunk hash val-
ues, where each exemplary small chunk hash value is repre-
sented by an individual character and the big chunks are 
represented by concatenated characters. Although most big 
chunks have been depicted as each containing four small 
chunks the number of small chunks within each big chunk is 
in fact variable. The exemplary input data stream 905 would 
be the result of the application of a first standard content 
defined chunking algorithm (e.g., 220 of FIG. 2) designed to 
chunk with a large average chunk size. The second modifying 
selection function consisting of a content-defined chunking 
splitting function (e.g., 240 of FIG. 2) according to FIG. 8 is 
then applied to the exemplary input data stream 905 by itera-
tively looking at the input data stream 905 with a look ahead 
buffer 910. The look ahead buffer 910 has an exemplary 
capacity of two (2) big chunks. Initially the look ahead buffer 
910 is filled with the big chunks, or more specifically the hash 

values of those chunks, at the beginning of the input data 
stream 905, "abcd" and "efgh." After each decision to emit 
either split small chunks or big chunks, the look ahead buffer 
910 is filled up to capacity beginning with the chunk after the 
last emitted chunk. For example, when the look ahead buffer 
910 initially contains the two (2) big chunks "abcd" and 
"efgh" at the start of the input data stream 905, the small 
chunks "a," "b," "c," and "d" remain as a big chunk "abcd" 
915 and are emitted as such because neither this first big 
chunk nor the next big chunk "efgh" 920 have ever been seen 
before. After the look ahead buffer 910 is refilled starting with 
the next big chunk "efgh" after the last previously emitted 
chunk "abcd" 915, the small chunks "e," "f," "g," and "h" also 
remain as a big chunk "efgh" 920 and are emitted as such 
because neither the last chunk emitted, "abcd" 915, nor the 
next big chunk "ijkl" 925 have ever been seen before. After 
the look ahead buffer 910 is refilled starting with the next 
chunk "ijkl" after the last previously emitted chunk "efgh" 
920, the small chunks "i," "j," "k," and "1" also remain as a big 
chunk "ijkl" 925 and are emitted as such because neither the 
last chunk emitted, "efgh" 920, nor the next big chunk 
"mnop" have ever been seen before. After the look ahead 
buffer 910 is refilled starting with the next chunk "mnop" 
after the last previously emitted chunk "ijkl" 925, the small 
chunks "m," "n," "o," and "p" are split up from being a big 
chunk "mnop" and are all emitted as small chunks "m," "n," 
"o," and "p" 930 because while the last chunk emitted "ijkl" 
925 had never been seen before, the next big chunk "efgh" has 
been seen before at 920. 
[0081] Referring now to the continuation of this exemplary 
illustration 900 in FIG. 9b, after the look ahead buffer 910 is 
refilled starting with the next chunk "efgh" after the last 
previously emitted chunk "p" 930, the small chunks "e," "f," 
"g," and "h" remain as a big chunk "efgh" 940 and emitted as 
such because these chunks constitute a previously emitted big 
chunk as seen before at 920. After the look ahead buffer 910 
is refilled starting with the next chunk "ijkl" after the last 
previously emitted chunk "efgh" 940, the small chunks "i," 
"j," "k," and "1" remain as a big chunk "ijkl" 945 and are 
emitted as such because these chunks, as the start of the look 
ahead buffer 910, constitute a previously emitted big chunk as 
seen before at 925. After the look ahead buffer 910 is refilled 
starting with the next chunk "aaab" after the last previously 
emitted chunk "ijkl" 945, the small chunks "a," "a," "a," and 
"b" are split up from being a big chunk "aaab" and are all 
emitted as small chunks "a," "a," "a," and "b" 950 because 
while the next possible big chunk "bbab" has never been seen 
before, the last chunk emitted "ijkl" 945 was big and had been 
seen before at 925. After the look ahead buffer 910 is refilled 
starting with the next chunk "bbab" after the last previously 
emitted chunk "b" 950, the small chunks "b," "b," "a," and "b" 
remain as a big chunk "bbab" 955 and are emitted as such 
because neither the last chunk emitted, "b" 950, nor the next 
big chunk "cdkl" 965 are big chunks that have been seen 
before. The reader will appreciate that a chunk splitting algo-
rithm has no recourse to detecting and re-emitting the large 
duplicate chunk "abcd" beginning halfway through big chunk 
"bbab" 955. This may have been possible in a chunk amal-
gamation algorithm which does an increased amount of que-
rying for duplicate big chunks. 

[0082] Referring now to the continuation of this exemplary 
illustration 900 in FIG. 9c, after the look ahead buffer 910 is 
refilled starting with the next chunk "cdkl" after the last 
previously emitted chunk "bbab" 955, the small chunks "c," 
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"d," "k," and "1" remain as a big chunk "cdkl" 965 and are 
emitted as such because the last chunk emitted, "bbab" 955 
has never been seen before and the next big chunk "mnop" has 
never been previously emitted as a big chunk. After the look 
ahead buffer 910 is refilled starting with the next chunk 
"mnop" after the last previously emitted chunk "cdkl" 965, 
the small chunks "m," "n," "o," and "p" are split up from being 
a big chunk "mnop" and are all emitted as small chunks "m," 
"n," "o," and "p" 970 because while the previously emitted 
chunk "cdkl" 965 had never been seen before, the next chunk 
"ijkl" has been seen before at 945. After the look ahead buffer 
910 is refilled starting with the next chunk "ijkl" after the last 
previously emitted chunk "p" 970, the small chunks "i," "j," 
"k," and "1" remain as a big chunk "ijkl" 975 and are emitted 
as such because these chunks, as the start of the look ahead 
buffer 910, constitute a previously emitted big chunk "ijkl" as 
seen before at 945. After the look ahead buffer 910 is refilled 
starting with the next chunk "xxyy" after the last previously 
emitted chunk "ijkl" 975, the small chunks "x," "x," y, and "y" 
are split up from being a big chunk "xxyy" and are all emitted 
as small chunks "x," "x," "y," and "y" 980 because while the 
next chunk "zzac" has never been seen before, the previously 
emitted chunk "ijkl" has been seen before at 975. After the 
look ahead buffer 910 is refilled starting with the next chunk 
"zzac" after the last previously emitted chunk "y" 980, the 
small chunks "z," "z," "a," and "c" remain as a big chunk 
"zzac" 985 and are emitted as such because the following big 
chunk "a" has never been seen before, and the previous chunk 
emitted, "y" 980, was duplicate but not a duplicate big chunk. 
Finally, after the look ahead buffer 910 is refilled with the 
remaining small chunk "a" after the last chunk emitted "zzac" 
985, the small chunk "a" is simply emitted as such. Applying 
the claimed second modifying selection function, which con-
sists of a content-defined chunking splitting function accord-
ing to FIG. 8, to the input data stream 905 has resulted in the 
modification of chunks provided from the first standard 
chunking algorithm to be big within long regions of non-
duplicate data, small at the borders of long regions of non-
duplicate data, and small within short regions of non-dupli-
cate data. 

[0083] FIG. 10 is an exemplary application of a content-
defined chunking amalgamation policy to an archive or 
backup system 1000, according to at least one embodiment of 
the present invention. In this exemplary application of the 
present invention, a source file system 1010 in, for example, 
a computer system may be provided and may contain the data 
set or data stream. This source file system 1010 may be 
coupled to a backup program 1020. The present invention 
may be incorporated into the source file system 1010 and/or 
the backup program, and may operate to provide better data 
chunking and better duplicate elimination. The backup pro-
gram 1020 may then input the modified data into a target 
storage device 1030, for example, a tape, disk, remote disk 
storage system, etc. One exemplary storage system may be, 
for example, a Saturn full backup system. Some experimental 
data results for various exemplary embodiments of the 
present invention will now be provided. 

[0084] Now we will turn to a discussion of experimental 
results and analysis of the invention. The system(s) and meth-
od(s) herein and various simulation devices (e.g., tools) 
allowed us to investigate a class of techniques, procedures or 
algorithms where we used information about non-emitted 
smalls (i.e. the small chunks that were not emitted because 
they were part of some big chunk). A policy based on such 

information is less desirable, since there will be a large 
amount of small chunk "metadata" that needs to be stored 
somehow. 
[0085] In the test code, we may also be allowed some 
impractical algorithms of theoretical interest. We maintained 
Bloom filters for many different types of chunk emission 
separately: small chunks and big chunks, both emitted and 
non-emitted. One benefit (for example) is to allow the concept 
of `duplicate' data region to include both previously emitted 
small chunks as well as non-emitted small chunks (that were 
emitted as part of some previous big chunk emission). An 
algorithm modified to query non-emitted small chunks may 
detect duplicate data at a more fine-grained level. The code 
could also inject false positives into the chunk existence 
replies, in order to measure the effect of approximately 
answering existence queries. 
[0086] We used a data set for testing consisting of approxi-
mately 1.16 Terabyte of full backups of hundreds of user 
directories over a 4 month period. Although we are not certain 
what the distribution of file types was, only that it was a large 
set of real data and fairly typical of what might be seen in 
practice. 
[0087] A number of tools were developed which eased 
online simulation of various techniques and/or algorithms so 
that analysis of very large input data sets is possible. The key 
idea was to generate a binary `summary' of the input data. For 
every small chunk generated at level 9 (averaging 512 bytes 
per chunk, in theory), we stored the SHA- 1 hash of the chunk, 
as well as the chunk size and actual cut point level[s]. This 
chunk data was sufficient to re-chunk most input datasets, 
except for very nonrandom datasets that generate no chunk 
points at all 2 . Later versions of our utilities also stored local 
compression estimates, generated by running every (4k, 8k, 
16k, 32k) fixed-size chunk through an LZO compression 
algorithm and storing a single byte with the percent of origi-
nal chunk size. Then given the current stream offset and 
chunk size, we could estimate the compression at arbitrary 
points in the stream. In this fashion, the 1.1 Terabyte input 
data could be analyzed as a more portable 60 Gb set of 
summary information. (Such re-analyses took hours instead 
of days, largely due to reduced reading from disk.) We could 
also store the duplicate/non-duplicate status of every level 9 
chunk as it was encountered to a separate file. 
[0088] Within a given algorithm, there are several param-
eters, such as minimum and maximum chunk size, and trigger 
level, which may generate different behavior. Breaking apart 
and amalgamation algorithms also have other parameters, 
such as k (the number of small chunks in a big chunk), 
whether variable size big chunks are permitted, etc. When an 
algorithm is run over the entire 1.1 Terabyte dataset or its 
compressed summary, we measure the DER, usually as the 
ratio of input bytes to bytes within stored compressed chunks. 
The performance of different algorithms on our dataset was 
measured. 
[0089] FIG. 11 shows experimental results of compression 
factor vs. chunk size for various chunking techniques, accord-
ing to at least one embodiment. FIG. 11 presents a sampling 
of DER vs. chunk size measurements for three algorithms. 
For each algorithm, the solid line is the average size of the 
stored chunks, while the dotted partner is the average com-
pressed size of the same chunks. Larger average chunk sizes 
compress better. The baseline algorithm 1120 and 1125 varies 
minimum and maximum chunk sizes as well as the average 
chunks size. Generally, we kept the chunking level set to 
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produce average chunk length roughly midway between 
minimum and maximum chunk size, and we used three 
backup levels of cut-point. A simple amalgamation chunker, 
running with fixed-size big chunks is shown in the `Simple' 
traces 1130 and 1135. The `Fancy' algorithm 1140 and 1145 
has the best performance, but this used Bloom filter queries 
for chunks which were previously encountered but emitted 
only as part of a previous big chunk. 

[0090] Referring to FIG. 12, experimentally results are 
shown of compression factor vs. chunk size for various 
chunking techniques, according to at least one embodiment. 
FIG. 12 shows more measurements, over a larger range of 
average chunk sizes than FIG. 11, of the same three algo-
rithms: baseline 1220 and 1225, practical 1245 and 1250, and 
best 1235 and 1240. We also show the effect of false positive 
replies to chunk existence queries as the false positive rate is 
set at 0, 1, 2, 5, 10, 20 and 40%. The horizontal line is the 
de-duplication performance of a commercial (DataDomain) 
backup appliance for the same input data (DER=5.67). For 
this measurement, the average chunk size is unknown, but 
likely to be somewhere between 4-10 k bytes. The traces 
marked `Practical' and `Best' are the same algorithms as in 
FIG. 11, but over a wider range of parameters. On a log-scale, 
trends appear linear over a range of chunk sizes from 1k to 
80k. However, this is not a general rule, as limiting behaviors 
must exist. As the chunk sizes become very large (the lower 
part of the figure) there was little benefit from modifying the 
baseline algorithm. To be competitive, we wish to compete 
with systems having an LBFS-style chunk size around 8k, 
which yielded a DER around 5.7. We are able to achieve a 
similar DER with average stored chunk sizes between 20k 
and 30k. It was tempting to investigate whether approximate 
queries from a local Bloom filter could form the basis of a 
practical and scalable archival mechanism. For this to be 
possible with huge (e.g. Pb) datasets, we investigated the 
sensitivity of some algorithms to falsely identified duplicates. 
In all cases, it turned out that DER and chunk size degrade 
very rapidly, even with 1% of false positive for chunk exist-
ence queries. What happens is these falsely generated dupli-
cate/non-duplicate transitions incorrectly generate small 
chunks. At best, one should restrict such `local' Bloom filters 
to high-quality queries of existence in some restricted past, so 
that no false positives arise. However, if an item is not found 
in the local Bloom filter, one should still get a definitive 
answer from the backend storage mechanism. For network 
transmission, a local Bloom filter approach may be entirely 
adequate. 

[0091] We investigated some more complex algorithms 
that attempted to be smarter about what could be done to 
prioritize equivalent choices of big chunk if they occurred, 
but these did not work appreciably better. For example, one 
variant used some rather complicated logic to prioritize big 
chunks that start or end on resynchronization points, and tests 
to use the longest big chunk of equivalent priority. It showed 
no noticeable improvement. In fact, several such attempts 
work badly when run on actual data, often for rather subtle 
reasons. 

[0092] Referring to FIG. 13, experimental results are 
shown of breaking apart de-duplication ratio vs. chunk size 
for various chunking techniques, according to at least one 
embodiment. In FIG. 13 we present results with a breaking-
apart algorithm, compared to the baseline algorithm 1320. 
Series 1 1325, Series 2 1330, Series 3 1335 and joining 
minimal querying 1340 only have nominal improvement over 

the baseline 1320. The parameter varied for these runs was the 
number of expected smalls that re-chunking would generate, 
k. However, to achieve good performance, the parameters of 
the breaking-apart algorithms must be carefully set. The 
breaking apart algorithms seem to do particularly well at 
average chunk sizes of 40-50k. Unfortunately, this regime has 
somewhat uncompetitive DER. We also show the uncom-
pressed DER for some of the `Simple' amalgamation algo-
rithm data. We see that the breaking-apart algorithm can be 
almost as good as the simplest implementations of amalgam-
ation algorithms. 
[0093] We compared the DER of our dataset using the 
baseline algorithm when the chunk point selection (see Table 
I) used hashes based on Rabin, multiplication by a large 
prime, and a combined boxcar+CRC32c approach, MLCG 
and combined-CRC32c hashes. We found almost identical 
duplicate elimination values and average chunk sizes. This 
corroborates Thaker's observation that with typical data even 
with a plain boxcar sum to select chunking points generated a 
reasonably random-like chunk size distribution. He explained 
this as an indication that there was enough bit-level random-
ness in the input data itself, so a high-quality randomizing 
hash was not required for his data. 
[0094] Now we will discuss the data characteristics of, for 
example, optimal "always-together" chunks. For our 1.1 Tb 
dataset, it is also interesting to consider what the best possible 
arrangement of small chunks would be. It turned out that at 
the A=512 level of the chunk summary, only approximately 
360 million distinct chunks were involved. With care, and 
translation of the distinct message digests to integer identifi-
ers, it was possible to write other tools to determine some 
simple chunk amalgamations that used "future knowledge" to 
determine some theoretical limits for chunking performance. 
[0095] A simple set of optimization moves is to always 
amalgamate two chunks that always occurred together. This 
will not affect the DER at all, but will increase the average 
chunk size. Iterating this produces that longest possible 
strings of chunks that always co-occurred. Such amalgam-
ation leaves the DER unaffected, but increases the average 
chunk size. 
[0096] In practice, amalgamating often-together or always-
together chunks may be a useful background task to optimiz-
ing storage. However, an archival backend may not support 
deletion, and may not provide following-chunk information, 
so we did not follow this avenue. Instead this experiment 
provides with a method to judge how well our simple algo-
rithms based on duplicate/non-duplicate transition regions 
were performing. It was found that this procedure on the raw 
`level 9' summary stream increased the average average 
uncompressed stored chunk size from 576 to 5855 bytes (i.e. 
the average number of always-co-occurring small chunks was 
around 10 for this dataset). This 6k size is similar to the chunk 
size typically used in low-bandwidth network file system 
(LBFS) style chunking. (See, for example, A. Muthita-
charoen, B. Chen and D. Mazieres, "A Low-bandwidth Net-
work File System", (2001), pp. 174-187.) 
[0097] We also analyzed a larger original chunking with 
average chunk size around 8k. Amalgamating every pair of 
always-together chunks resulted in an average stored chunk 
size of 75397 bytes. Once again, this procedure increased the 
average stored chunk size by a factor of about 10. 
[0098] Referring now to FIG. 14, the graph 1400 puts the 
previously mentioned `theoretical' limits in perspective with 
the baseline chunking algorithm 1430, a number of other 
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variable-size amalgamation runs 1440 and 1450 (a different 
set from those presented in previous Figures, but with about 
the same behavior), and various the theoretical chunk size 
limits 1460 and 1470. In this case, the goal is to increase both 
DER and chunk-size. As shown, the graph 1400 illustrates the 
theoretical chunk size limit determined by amalgamating 
every set of chunks which always co-occurred in our 1.1 
Terabyte dataset. This procedure may leave the duplicate 
elimination ratio (DER) unaffected (ignoring metadata 
costs), but may increase the average stored chunk size. The 
graph 1400 places our amalgamation algorithms with vari-
ably-sized big chunks, e.g., 1440, about halfway to this par-
ticular theoretical chunking limit, for our 1.1 Terabyte 
dataset. 

[0099] Although originally formulated based on consider-
ations of simple principles P1 and P2, it is important to judge 
how well much our real test data input departs from such a 
simplistic data model. So, an analysis of the actual character-
istics and variations in our test data set was considered. We 
found that the actual input test data deviated quite substan-
tially from an "ideal" dataset adhering to P1 and P2. A sim-
plest-possible dataset adhering to P1 might be expected to 
have long sequences of contiguous non-duplicate data during 
a first backup session, followed by long stretches of duplicate 
data during subsequent runs. 

[0100] We began the assessment of our test data set by 
interrogating the summary stream chunked at the 512-byte 
level, using a bit stream summary of the "current" duplication 
status of the chunk. The actual histograms of number of 
contiguous non-duplicate chunks vs. number of contiguous 
duplicate following chunks (and vice versa) showed an over-
whelming and smoothly varying preference to having a single 
non-duplicate chunk followed by a single duplicate chunk. 
This may be surprising given the simple principles used to 
generate the heuristics involved in motivating the present 
invention. Histograms for the final contiguous numbers of 
duplicate/non-duplicate chunks (after 14 full backup ses-
sions) were graphed (not shown). Also, surprisingly, the his-
tograms after the first "full" backup were similar in character 
to those. However, it is noteworthy that such histograms do 
not suffice for estimating the duplicate elimination ratio of 
different policies since the number of times a chunk was 
duplicated was not counted. In conjunction with our measure-
ments that the average size of always-together chunks was 
around 6k, this assessment suggests that a deeper understand-
ing of the statistical behavior of the test dataset may result in 
other heuristics that may even be able to outperform the 
procedures invented herein, particularly for input datasets 
involving high interspersing of duplicate with non-duplicate 
chunks. Nevertheless, the improvements found using this 1.1 
Tb of test data suggest that the present invention may also 
achieve robust performance on numerous other real-life 
datasets having similar non-ideal statistical behaviors. 

[0101] As noted above, in various embodiments the present 
invention may be used for data identification and duplicate 
data elimination. As such, subsequent to determining pre-
ferred hash, cut, boundary, chunk, or break points, a hash 
value for the determined chunk of data may be produced and 
compared with previously stored hash values. In various 
embodiments, the present invention may be particularly 
applicable to data duplication elimination. Further, as also 
noted above, the present invention may be equally applicable 
to various electronic systems including wireless networks, 
the Internet, intranets, computer systems and networks with a 

string of data that is processed, stored, and/or transmitted and 
the use of hashing can prove useful. A description is provided 
below of some of the various systems upon which the present 
invention may operate. 

[0102] As noted, in various embodiments, the system(s) 
and method(s) provided herein may be implemented using a 
computing device, for example, a personal computer, a server, 
a mini-mainframe computer, and/or a mainframe computer, 
etc., programmed to execute a sequence of instructions that 
configure the computer to perform operations as described 
herein. In various embodiments, the computing device may 
be, for example, a personal computer available from any 
number of commercial manufacturers such as, for example, 
Dell Computer of Austin, Tex., running, for example, the 
WindowsTM XPTM and Linux operating systems, and having a 
standard set of peripheral devices (e.g., keyboard, mouse, 
display, printer). 

[0103] FIG. 15 is a functional block diagram of one 
embodiment of a computing device 1500 that may be useful 
for hosting software application programs implementing the 
system(s) and method(s) described herein. Referring now to 
FIG. 15, the computing device 1500 may include a processing 
unit 1505, communications interface(s) 1510, storage device 
(s) 1515, a user interface 1520, operating system(s) instruc-
tions 1535, application executable instructions/API 1540, all 
provided in functional communication and may use, for 
example, a data bus 1550. The computing device 1500 may 
also include system memory 1555, data and data executable 
code 1565, software modules 1560, and interface port(s). The 
Interface Port(s) 1570 may be coupled to one or more input/ 
output device(s) 1575, such as printers, scanner(s), all-in-one 
printer/scanner/fax machines, etc. The processing unit(s) 
1505 may be one or more microprocessor(s) ormicrocontrol-
ler(s) configured to execute software instructions implement-
ing the functions described herein. Application executable 
instructions/APIs 1540 and operating system instructions 
1535 may be stored using computing device 1500 on the 
storage device(s) 1515 and/or system memory 1555 that may 
include volatile and nonvolatile memory. Application execut-
able instructions/APIs 1540 may include software applica-
tion programs implementing the present invention system(s) 
and method(s). Operating system instructions 1535 may 
include software instructions operable to control basic opera-
tion and control of the processor 1505. In one embodiment, 
operating system instructions 1535 may include, for example, 
the XPTM operating system available from Microsoft Corpo-
ration of Redmond, Wash. 

[0104] Instructions maybe read into a main memory from 
another computer-readable medium, such as a storage device. 
The term "computer-readable medium" as used herein may 
refer to any medium that participates in providing instructions 
to the processing unit 1505 for execution. Such a medium 
may take many forms, including, but not limited to, non-
volatile media, volatile media, and transmission media. Non-
volatile media may include, for example, optical or magnetic 
disks, thumb or jump drives, and storage devices. Volatile 
media may include dynamic memory such as a main memory 
or cache memory. Transmission media may include coaxial 
cable, copper wire, and fiber optics, including the connections 
that comprise the bus 1550. Transmission media may also 
take the form of acoustic or light waves, such as those gener-
ated during Radio Frequency (RF) and Infrared (IR) data 
communications. Common forms of computer-readable 
media include, for example, floppy disk, a flexible disk, hard 
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disk, magnetic tape, any other magnetic medium, Universal 
Serial Bus (USB) memory stickTM, a CD-ROM, DVD, any 
other optical medium, a RAM, a ROM, a PROM, an EPROM, 
a Flash EPROM, any other memory chip or cartridge, a carrier 
wave as described hereinafter, or any other medium from 
which a computer can read. 
[0105] Various forms of computer-readable media maybe 
involved in carrying one or more sequences of one or more 
instructions to the processing unit(s) 1505 for execution. For 
example, the instructions may be initially borne on a mag-
netic disk of a remote computer(s) 1585 (e.g., a server, a PC, 
a mainframe, etc.). The remote computer(s) 1585 may load 
the instructions into its dynamic memory and send the 
instructions over a one or more network interface(s) 1580 
using, for example, a telephone line connected to a modem, 
which may be an analog, digital, DSL or cable modem. The 
network may be, for example, the Internet, and Intranet, a 
peer-to-peer network, etc. The computing device 1500 may 
send messages and receive data, including program code(s), 
through a network of other computer(s) via the communica-
tions interface 1510, which may be coupled through network 
interface(s) 1580. A server may transmit a requested code for 
an application program through the Internet for a downloaded 
application. The received code may be executed by the pro-
cessing unit(s) 1505 as it is received, and/or stored in a storage 
device 1515 or other non-volatile storage 1555 for later 
execution. In this manner, the computing device 1500 may 
obtain an application code in the form of a carrier wave. 
[0106] The present system(s) and method(s) may reside on 
a single computing device or platform 1500, or on multiple 
computing devices 1500, or different applications may reside 
on separate computing devices 1500. Application executable 
instructions/APIs 1540 and operating system instructions 
1535 may be loaded into one or more allocated code segments 
of computing device 1500 volatile memory for runtime 
execution. In one embodiment, computing device 1500 may 
include system memory 1555, such as 512 MB of volatile 
memory and 80 GB of nonvolatile memory storage. In at least 
one embodiment, software portions of the present invention 
system(s) and method(s) may be implemented using, for 
example, C programming language source code instructions. 
Other embodiments are possible. 
[0107] Application executable instructions/APIs 1540 may 
include one or more application program interfaces (APIs). 
The system(s) and method(s) of the present invention may use 
APIs 1540 for inter-process communication and to request 
and return inter-application function calls. For example, an 
API may be provided in conjunction with a database 1565 in 
order to facilitate the development of, for example, SQL 
scripts useful to cause the database to perform particular data 
storage or retrieval operations in accordance with the instruc-
tions specified in the script(s). In general, APIs may be used to 
facilitate development of application programs which are 
programmed to accomplish some of the functions described 
herein. 
[0108] The communications interface(s) 1510 may provide 
the computing device 1500 the capability to transmit and 
receive information over the Internet, including but not lim-
itedto electronic mail, HTML or XML pages, and file transfer 
capabilities. To this end, the communications interface 1510 
may further include a web browser such as, but not limited to, 
Microsoft Internet ExplorerTM provided by Microsoft Corpo-
ration. The user interface(s) 1520 may include a computer 
terminal display, keyboard, and mouse device. One or more 

Graphical User Interfaces (GUIs) also may be included to 
provide for display and manipulation of data contained in 
interactive HTML or XML pages. 
[0109] Referring now to FIG. 16, a network 1600 upon 
which the system(s) and method(s) may operate, is illus-
trated. As noted above, the system(s) and method(s) of the 
present patent application may be operational on one or more 
computer(s). The network 1600 may include one or more 
client(s) 1605 coupled to one or more client data store(s) 
1610. The one or more client(s) may be coupled through a 
communication network (e.g., fiber optics, telephone lines, 
wireless, etc.) to the communication framework 1630. The 
communication framework 1630 may be, for example, the 
Internet, and Intranet, a peer-to-peer network, a LAN, an ad 
hoc computer-to-computer network, etc. The network 1600 
may also include one or more server(s) 1615 coupled to the 
communication framework 1630 and coupled to a server data 
store(s) 1620. The present invention system(s) and method(s) 
may also have portions that are operative on one or more of 
the components in the network 1600 so as to operate as a 
complete operative system(s) and method(s). 
[0110] While embodiments of the invention have been 
described above, it is evident that many alternatives, modifi-
cations and variations will be apparent to those skilled in the 
art. In general, embodiments may relate to the automation of 
these and other business processes in which analysis of data is 
performed. Accordingly, the embodiments of the invention, 
as set forth above, are intended to be illustrative, and should 
not be construed as limitations on the scope of the invention. 
Various changes may be made without departing from the 
spirit and scope of the invention. Accordingly, the scope of the 
present invention should be determined not by the embodi-
ments illustrated above, but by the claims appended hereto 
and their legal equivalents 
[0111] All publications, patents, and patent applications 
cited herein are hereby incorporated by reference in their 
entirety for all purposes. 

We claim: 
1. A method of data management, comprising: 
breaking a data stream into a plurality of data groups using 

a combination of a first data segmentation procedure and 
a second data segmentation procedure, wherein 
expected average data group size of the first data seg-
mentation procedure and the second data segmentation 
procedure is different. 

2. The method of claim 1, wherein the second data segmen-
tation procedure includes one or more alternate data segmen-
tation procedures. 

3. The method of claim 1, wherein the second data segmen-
tation procedure is applied only when certain predetermined 
criteria related to the data in the data stream are met as 
determined by looking ahead at the data in the data stream. 

4. The method of claim 1, wherein the first segmentation 
procedure has a smaller average data group size than the 
second segmentation procedure. 

5. The method of claim 4, wherein the second data segmen-
tation procedure combines two or more small data groups 
together to make a larger data group of larger average size. 

6. The method of claim 5, wherein the second data segmen-
tation procedure combines the two or more small data groups 
into a larger data group when the two or more small data 
groups are new data that have not been determined to have 
previously occurred in the data stream. 



US 2008/0133561 Al 
	

Jun. 5, 2008 
LEI 

7. The method of claim 6, wherein one or more small data 
groups of new data are combined into a larger data group 
when a maximum predetermined length of the data stream 
has been reached or processed. 

8. The method of claim 5, wherein the second data segmen-
tation procedure skips the step of combining the two or more 
small data groups into a larger data group whenever the two or 
more small data groups are new data that have not been 
determined to have previously occurred in the data stream, 
and the small data groups occur sequentially after a data 
group has been determined to have previously occurred. 

9. The method of claim 5, wherein the second data segmen-
tation procedure skips the step of combining the two or more 
small data groups into a larger data group when the two or 
more small data groups are new data that have not been 
determined to have previously occurred in the data stream, 
and the small data groups occur sequentially before a data 
group that has been determined to have previously occurred. 

10. The method of claim 5, wherein the second data seg-
mentation procedure skips the step of combining the two or 
more small data groups into a larger data group when the two 
or more small data groups are new data that have not been 
determined to have previously occurred in the data stream, 
and the small data groups occur sequentially either before or 
after a data group that has been determined to have previously 
occurred. 

11. The method of claim 1, wherein one or more small data 
groups of new data are combined into a larger data group 
when a maximum number of small data groups have already 
been combined. 

12. The method of claim 11, further comprising the step of: 
emitting one or more small data group(s) or one or more 

larger data group(s). 
13. The method of claim 12, wherein a larger data group is 

only emitted if a resynchronization point is not crossed. 
14. The method of claim 13, wherein a duplicate status is 

assigned to a small data group that either has previously been 
emitted or has been determined to have been previously emit-
ted as part of a previously emitted large data group, and 
wherein the plurality of data groups are a sequential stream of 
consecutive data. 

15. The method of claim 14, wherein the first data segmen-
tation procedure is a content-defined chunking or blocking 
procedure that independently determines break points and 
data grouping from data in the data stream and inputs that 
information into the second data segmentation procedure, and 
the second data segmentation procedure is a modified con-
tent-defined chunking or blocking procedure or is a procedure 
that combines two or more smaller data groups into one or 
more larger groups of data. 

16. The method of claim 15, wherein the method is used for 
performing duplicate data elimination in a data storage sys-
tem. 

17. The method of claim 1, wherein a look-ahead buffer is 
used to determine when the second data segmentation proce-
dure will be applied. 

18. The method of claim 1, wherein the second data seg-
mentation procedure further breaks apart a non-duplicate big 
data group, block or chunk either before or after a duplicate 
region or duplicate big data group, block or chunk is detected. 

19. The method of claim 18, wherein the first segmentation 
procedure has a larger average data group size than the second 
segmentation procedure. 

20. The method of claim 1, wherein the second data seg-
mentation procedure is not applied to at least one smaller data 
group when no larger data group ending with this smaller data 
group is considered to be a duplicate, when an immediately 
following number of data groups are of a predetermined type, 
or an immediately following amount of data is considered to 
be duplicate data. 

21. The method of claim 1, wherein a single alternate data 
segmentation procedure is used rather than the first segmen-
tation procedure and the second data segmentation procedure, 
if a result of using both the first segmentation procedure and 
the second data segmentation procedure does not achieve an 
improved expected result. 

22. The method of claim 1, wherein whenever there are 
multiple opportunities to apply the second data segmentation 
procedure, and at least one resulting larger data group(s) is 
estimated to be a duplicate, then the second data segmentation 
procedure is applied to at least one such larger data group(s). 

23. The method of claim 1, further comprising the step of: 
emitting one or more smaller data group(s) or one or more 
larger data group(s). 

24. A method of data management, comprising: 
applying a first content-defined data chunking procedure to 

obtain one or more initial chunking points; and 
applying a second content-defined data chunking proce-

dure, based on a predetermined set of criteria, so as to 
modify the initial chunking points to different chunking 
points thereby increasing an average size of data chunks 
and an average amount of duplicate data identified. 

25. The method of claim 24, wherein the second content-
defined data chunking procedure includes a chunk combining 
procedure to amalgamate data chunks defined by the initial 
chunking points. 

26. The method of claim 24, wherein the second content-
defined data chunking procedure includes a chunk splitting 
procedure to split data chunks defined by the initial chunking 
points. 

27. A method of content-defined chunking, comprising the 
steps of: 

amalgamating small chunks into large chunks within long 
stretches of data that has been determined to be non-
duplicate data; 

bordering the edges within long stretches of data that has 
been determined to be non-duplicate data regions that 
are adjacent to data regions that are determined to be 
duplicate data with small chunks by not amalgamating 
the small chunks found near the edges; and 

re-emitting large chunk(s) which are found to be duplicate 
(s) data. 

28. A system of data management, comprising: 
a data identification system; and 
a data manipulation system, wherein the data manipulation 

system, based on a predetermined set of criteria, selec-
tively modifies one or more initial data break points to so 
as to increase the average size of data groups. 

29. The system of claim 28, wherein the data manipulation 
system selectively modifies one or more initial break points 
so as to increase the average amount of duplicate data iden-
tified instead of increase the average size of data groups. 

30. The system of claim 28, wherein the data manipulation 
system modifies the initial break points by applying a data 
block combining procedure to amalgamate existing data 
blocks. 
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31. The system of claim 28, wherein the data manipulation 
system modifies the initial break points by applying a data 
block splitting procedure to split existing data blocks. 

32. A system of data management, comprising: 
means for performing data identification; and 
means for manipulating data, wherein the means for 

manipulating data, based on a predetermined set of cri-
teria, selectively modifies one or more initial data break 
points so as to increase the average size of data groups. 

33. The system of claim 32, wherein the means for manipu-
lating data selectively modifies one or more initial break  

points so as to increase the average amount of duplicate data 
identified instead of increase the average size of data groups. 

34. The system of claim 32, wherein the means for manipu-
lating data modifies the initial break points by applying a data 
block combining procedure to amalgamate existing data 
blocks. 

35. The system of claim 34, wherein the means for manipu-
lating data modifies the initial break points by applying a data 
block splitting procedure to split existing data blocks. 
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