
III III 0 IIOI OlD III OII 100 IIII 00 liii 00 110 III 1010 II 0I II
US 20160373745A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0373745 Al

Joshi et al. (43) Pub. Date: Dec. 22, 2016

(54) GROUPING PALETTE BYPASS BINS FOR
VIDEO CODING

(71) Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

(72) Inventors: Rajan Laxman Joshi, San Diego, CA
(US); Vadim Seregin, San Diego, CA
(US); Wei Pu, Pittsburgh, PA (US);
Feng Zou, San Diego, CA (US); Marta
Karczewicz, San Diego, CA (US)

(21) Appl. No.: 15/177,201

(22) Filed: Jun. 8, 2016

Related U.S. Application Data

(60) Provisional application No. 62/175,137, filed on Jun.
12, 2015.

Publication Classification

(51) Int. Cl.
HO4N 19/119 (2006.01)
HO4N 19/13 (2006.01)

SOURCE DEVICE
12

VIDEO SOURCE
18

VIDEO
ENCODER

20

OUTPUT
INTERFACE

22

HO4N 19/159 (2006.01)
HO4N 19/184 (2006.01)

(52) U.S. Cl.
CPCH04N19/119 (2014.11); H04N19/184

(2014.11); H04N19/13 (2014.11); HO4N
19/159 (2014.11)

(57) ABSTRACT

An example method of coding video data includes coding,
from a coded video bitstream, a syntax element that indi-
cates whether a transpose process is applied to palette
indices of a palette for a current block of video data;
decoding, from the coded video bitstream and at a position
in the coded video bitstream that is after the syntax element
that indicates whether the transpose process is applied to
palette indices of the palette for the current block of video
data, one or more syntax elements related to delta quanti-
zation parameter (QP) and/or chroma QP offsets for the
current block of video data; and decoding the current block
of video data based on the palette for the current block of
video data and the one or more syntax elements related to
delta QP and/or chroma QP offsets for the current block of
video data.

,110

DESTINATION DEVICE
14

DISPLAY DEVICE
32

VIDEO
DECODER

30

INPUT INTERFACE
28

16

Patent Application Publication Dec. 22, 2016 Sheet 1 of 7 US 2016/0373745 Al

_ __

,210___

SOURCE DEVICE DESTINATION DEVICE

12 14

VIDEO SOURCE DISPLAY DEVICE

VIDEO VIDEO
ENCODER DECODER

22

OUTPUT
________________ INPUT INTERFACE

INTERFACE - 0

22 ___

16

FIG. I

VIDEO DATA

PREDICTION
PROCESSING UNIT

100

PALETTE-BASED
ENCODING UNIT

122

I -I
I INTER- I

PREDICTION
PROCESSING

I UNIT I
I 12Q I
I I
I INTRA- I
I PREDICTION I
I

PROCESSING I
UNIT
126

I I
L_ ------I

FIG. 2

112

FILTER UNIT
114

DECODED
PICTURE
BUFFER

116

VIDEO ENCODER
20

102

TRANSFORM
PROCESSING

UNIT
104

SYNTAX ELEMENTS

INVERSE
TRANSFORM
PROCESSING

UNIT
110

QUANTIZATION
UNIT
106

INVERSE
QUANTIZATION

UNIT
108

ENTROPY
ENCODING

UNIT
118

BITSTREAM

-
-.

-.

-
-.

-.

ci)

ci)

.

,JI

ENCODED PREDICTION
VIDEO PROCESSING UNIT

1 152

PALETTE-
MEMORY BASED
i4 DECODING UNIT

I 165

MOTION
ENTROPY COMPENSATION
DECODING _______________ UNIT

UNIT
150

INTRA-
PREDICTION
PROCESSING

UNIT
166

INVERSE i I INVERSE
DECODED

QUANTIZATION I I TRANSFORM
____ PICTURE

UNIT
UNIT I I PROCESSING

FIG. 3

VIDEO DECODER
30

DECODED
VIDEO

-
-.

-.

-
-.

-.

ci)

ci)

.

,JI

202

204

206

I
I
I

-

- 470

208

210

I
I
I

-
-.

-.

-
-.

-.

ci)

.

ci)

FIG. 4
,JI

184 pc 192

Patent Application Publication Dec. 22, 2016 Sheet S of 7

244

I
I
I

US 2016/0373745 Al

RASTER
SCAN

266-

268—k

27O-

240

1 1 1 2 2 3 3 3

1 1 1 1 1 3 3 3

1 1 1 1 1 3 3 3

2 2 2 2 2 3 3 3

2 2 2 2 2 3 3 3

2 2 2 2 2 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

RUN=2 RUN=1 RUN =2
I I I

1 2 3

1 3

I I I 268
RUN=4 RUN=2

SNAKE

r SCAN
RUN=2 RUN=1 RUN=5

RUN =9

27O— I I I I I I I
RUN=5

FIG. 5

Patent Application Publication Dec. 22, 2016 Sheet 6 of 7 US 2016/0373745 Al

DECODE, FROM A CODED VIDEO BITSTREAM AND USING t-602
BYPASS MODE, A GROUP OF SYNTAX ELEMENTS FOR A
PALETTE FOR A CURRENT BLOCK OF VIDEO DATA

DECODE, USING CONTEXT ADAPTIVE BINARY ARITHMETIC —604
CODING (CABAC) WITH A CONTEXT AND AT POSITION IN THE
CODED VIDEO BITSTREAM THAT IS AFTER THE GROUP OF
SYNTAX ELEMENTS, A SYNTAX ELEMENT THAT INDICATES
WHETHER A TRANSPOSE PROCESS IS APPLIED TO PALETTE

INDICES OF THE PALETTE FOR THE CURRENT BLOCK OF
VIDEO DATA

DECODE, USING CABAC WITH A CONTEXT AND AT POSITION L.-606
IN THE CODED VIDEO BITSTREAM THAT IS AFTER THE I
SYNTAX ELEMENT THAT INDICATES WHETHER THE

TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA,
ONE OR MORE SYNTAX ELEMENTS RELATED TO DELTA
QUANTIZATION PARAMETER (QP) AND/OR CHROMA QP
OFFSETS FOR THE CURRENT BLOCK OF VIDEO DATA

GENERATE THE PALETTE FOR THE CURRENT BLOCK OF L-608
VIDEO DATA BASED ON THE GROUP OF SYNTAX ELEMENTS r
AND THE SYNTAX ELEMENT THAT INDICATES WHETHER A
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA

DECODE THE CURRENT BLOCK OF VIDEO DATA BASED ON L-610
THE PALETTE AND THE ONE OR MORE SYNTAX ELEMENTS
RELATED TO DELTA QUANTIZATION PARAMETER (QP) ANDI
OR CHROMA QP OFFSETS FOR THE CURRENT BLOCK OF

VIDEO DATA

FIG. 6

Patent Application Publication Dec. 22, 2016 Sheet 7 of 7 US 2016/0373745 Al

ENCODE, IN A CODED VIDEO BITSTREAM AND USING BYPASS I,-702
MODE, A GROUP OF SYNTAX ELEMENTS FOR A PALETTE FOR

A CURRENT BLOCK OF VIDEO DATA

ENCODE, USING CONTEXT ADAPTIVE BINARY ARITHM ETIC L-704
CODING (CABAC) WITH A CONTEXT AND AT POSITION IN THE
CODED VIDEO BITSTREAM THAT IS AFTER THE GROUP OF
SYNTAX ELEMENTS, A SYNTAX ELEMENT THAT INDICATES
WHETHER A TRANSPOSE PROCESS IS APPLIED TO PALETTE

INDICES OF THE PALETTE FOR THE CURRENT BLOCK OF
VIDEO DATA

ENCODE, USING CABAC WITH A CONTEXT AND AT POSITION [,-706
IN THE CODED VIDEO BITSTREAM THAT IS AFTER THE
SYNTAX ELEMENT THAT INDICATES WHETHER THE

TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA,
ONE OR MORE SYNTAX ELEMENTS RELATED TO DELTA
QUANTIZATION PARAMETER (QP) AND/OR CHROMA QP
OFFSETS FOR THE CURRENT BLOCK OF VIDEO DATA

FIG. 7

US 2016/0373745 Al

GROUPING PALETTE BYPASS BINS FOR
VIDEO CODING

10001] This application claims the benefit of U.S. Provi-
sional Application No. 62/175,137 filed Jun. 12, 2015, the
entire content of which is incorporated herein by reference.

TECHNICAL FIELD

10002] This disclosure relates to video encoding and
decoding.

BACKGROUND

10003] Digital video capabilities can be incorporated into
a wide range of devices, including digital televisions, digital
direct broadcast systems, wireless broadcast systems, per-
sonal digital assistants (PDAs), laptop or desktop computers,
tablet computers, c-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called "smart phones," video teleconferenc-
ing devices, video streaming devices, and the like. Digital
video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2,
MPEG-4, ITU-T H.263, ITIJ-T H.264/MPEG-4, Part 10,
Advanced Video Coding (AVC), ITU-T-H.265, the High
Efficiency Video Coding (HEVC) standard, and extensions
of such standards. The video devices may transmit, receive,
encode, decode, and/or store digital video information more
efficiently by implementing such video compression tech-
niques.

10004] Video compression techniques perform spatial (in-
tra-picture) prediction and/or temporal (inter-picture) pre-
diction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e.,
a video frame or a portion of a video frame) may be
partitioned into video blocks. Video blocks in an intra-coded
(I) slice of a picture are encoded using spatial prediction
with respect to reference samples in neighboring blocks in
the same picture. Video blocks in an inter-coded (P or B)
slice of a picture may use spatial prediction with respect to
reference samples in neighboring blocks in the same picture
or temporal prediction with respect to reference samples in
other reference pictures. Pictures may be referred to as
frames, and reference pictures may be referred to a reference
frames.

10005] Spatial or temporal prediction results in a predic-
tive block for a block to be coded. Residual data represents
pixel differences between the original block to be coded and
the predictive block. An inter-coded block is encoded
according to a motion vector that points to a block of
reference samples forming the predictive block, and the
residual data indicates the difference between the coded
block and the predictive block. An intra-coded block is
encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be
transformed from the pixel domain to a transform domain,
resulting in residual coefficients, which then may be quan-
tized. The quantized coefficients, initially arranged in a
two-dimensional array, may be scanned in order to produce
a one-dimensional vector of coefficients, and entropy coding
may be applied to achieve even more compression.

Dec. 22, 2016

SUMMARY

10006] In one example, a method of decoding video data
includes decoding, from a coded video bitstream, a syntax
element that indicates whether a transpose process is applied
to palette indices of a palette for a current block of video
data; decoding, from the coded video bitstream and at a
position in the coded video bitstream that is after the syntax
element that indicates whether the transpose process is
applied to palette indices of the palette for the current block
of video data, one or more syntax elements related to delta
quantization parameter (QP) and/or chroma QP offsets for
the current block of video data; and decoding the current
block of video data based on the palette for the current block
of video data and the one or more syntax elements related to
delta QP and/or chroma QP offsets for the current block of
video data.
10007] In another example, a method of encoding video
data includes encoding, in a coded video bitstream, a syntax
element that indicates whether a transpose process is applied
to palette indices of a palette for a current block of video
data; encoding, in the coded video bitstream and at a
position in the coded video bitstream that is after the syntax
element that indicates whether the transpose process is
applied to palette indices of the palette for the current block
of video data, one or more syntax elements related to delta
QP and/or chroma QP offsets for the current block of video
data; and encoding the current block of video data based on
the palette for the current block of video data and the one or
more syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data.
10008] In another example, a device for coding video data
includes a memory configured to store video data and one or
more processors. In this example, the one or more proces-
sors are configured to: code, in a coded video bitstream, a
syntax element that indicates whether a transpose process is
applied to palette indices of a palette for a current block of
video data; code, in the coded video bitstream and at a
position in the coded video bitstream that is after the syntax
element that indicates whether the transpose process is
applied to palette indices of the palette for the current block
of video data, one or more syntax elements related to delta
QP and/or chroma QP offsets for the current block of video
data; and code the current block of video data based on the
palette for the current block of video data and the one or
more syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data

10009] In another example, a device for coding video data
includes means for coding, in a coded video bitstream, a
syntax element that indicates whether a transpose process is
applied to palette indices of a palette for a current block of
video data; means for coding, in the coded video bitstream
and at a position in the coded video bitstream that is after the
syntax element that indicates whether the transpose process
is applied to palette indices of the palette for the current
block of video data, one or more syntax elements related to
delta QP and/or chroma QP offsets for the current block of
video data; and means for coding the current block of video
data based on the palette for the current block of video data
and the one or more syntax elements related to delta QP
and/or chroma QP offsets for the current block of video data.

10010] In another example, a computer-readable storage
medium stores instructions that, when executed, cause one
or more processors of a video coding device to: code, in a
coded video bitstream, a syntax element that indicates

US 2016/0373745 Al

whether a transpose process is applied to palette indices of
a palette for a current block of video data; code, in the coded
video bitstream and at a position in the coded video bit-
stream that is after the syntax element that indicates whether
the transpose process is applied to palette indices of the
palette for the current block of video data, one or more
syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data; and code the
current block of video data based on the palette for the
current block of video data and the one or more syntax
elements related to delta QP and/or chroma QP offsets for
the current block of video data.

10011] In another example, a computer-readable storage
medium stores at least a portion of a coded video bitstream
that, when processed by a video decoding device, cause one
or more processors of the video decoding device to: deter-
mine whether a transpose process is applied to palette
indices of a palette for a current block of video data; and
decode the current block of the video data based on the
palette for the current block of video data and a delta QP and
one or more chroma QP offsets for the current block of video
data, wherein one or more syntax elements related to the
delta QP and one or more syntax elements related to the one
or more chroma QP offsets for the current block of video
data are located at a position in the coded video bitstream
that is after a syntax element that indicates whether the
transpose process is applied to palette indices of the palette
for the current block of video data.

10012] The details of one or more examples are set forth
in the accompanying drawings and the description below.
Other features, objects, and advantages will be apparent
from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

10013] FIG. 1 is a block diagram illustrating an example
video coding system that may utilize the techniques
described in this disclosure.

10014] FIG. 2 is a block diagram illustrating an example
video encoder that may implement the techniques described
in this disclosure.

10015] FIG. 3 is a block diagram illustrating an example
video decoder that may implement the techniques described
in this disclosure.

10016] FIG. 4 is a conceptual diagram illustrating an
example of determining a palette for coding video data,
consistent with techniques of this disclosure.

10017] FIG. 5 is a conceptual diagram illustrating an
example of determining indices to a palette for a block of
pixels, consistent with techniques of this disclosure.

10018] FIG. 6 is a flowchart illustrating an example pro-
cess for decoding a block of video data using palette mode,
in accordance with one or more techniques of this disclo-
sure.

10019] FIG. 7 is a flowchart illustrating an example pro-
cess for encoding a block of video data using palette mode,
in accordance with one or more techniques of this disclo-
sure.

DETAILED DESCRIPTION

10020] This disclosure describes techniques for video cod-
ing and compression. In particular, this disclosure describes
techniques for palette-based coding of video data. For
instance, this disclosure describes techniques to support

Dec. 22, 2016
2

coding of video content, especially screen content with
palette coding, such as techniques for improved palette
index binarization, and techniques for signaling for palette
coding.

10021] In traditional video coding, images are assumed to
be continuous-tone and spatially smooth. Based on these
assumptions, various tools have been developed such as
block-based transform, filtering, etc., and such tools have
shown good performance for natural content videos.

10022] However, in applications like remote desktop, col-
laborative work and wireless display, computer generated
screen content may be the dominant content to be com-
pressed. This type of content tends to have discrete-tone and
feature sharp lines, and high contrast object boundaries. The
assumption of continuous-tone and smoothness may no
longer apply and thus traditional video coding techniques
may not be efficient ways to compress.

10023] Based on the characteristics of screen content
video, palette coding is introduced to improve screen con-
tent coding (SCC) efficiency as proposed in Guo et al.,
"Palette Mode for Screen Content Coding," Joint Collab-
orative Team on Video Coding (JCT-VC) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting:
Incheon, KR, 18-26 Apr. 2013, Document: JCTVC-M0323,
available at http://phenix.it-sudparis.eu/jct/doc_end_user/
documents/13_IncheonIwg11/JCTVC-M0323-v3.zip, (here-
inafter "JCTVC-M0323"). Specifically, palette coding intro-
duces a lookup table, i.e., a color palette, to compress
repetitive pixel values based on the fact that in SCC, colors
within one CU usually concentrate on a few peak values.
Given a palette for a specific CU, pixels within the CU are
mapped to palette indices. In the second stage, an effective
copy from left run length method is proposed to effectively
compress the index block's repetitive pattern. In some
examples, the palette index coding mode may be generalized
to both copy from left and copy from above with run length
coding. Note that, in some examples, no transformation
process may be invoked for palette coding to avoid blurring
sharp edges which can have a huge negative impact on
visual quality of screen contents.

10024] As discussed above, this disclosure describes pal-
ette-based coding, which may be particularly suitable for
screen generated content coding. For example, assume a
particular area of video data has a relatively small number of
colors. A video coder (a video encoder or video decoder)
may code a so-called "palette" as a table of colors for
representing the video data of the particular area (e.g., a
given block). Each pixel may be associated with an entry in
the palette that represents the color of the pixel. For
example, the video coder may code an index that maps the
pixel value to the appropriate value in the palette.

10025] In the example above, a video encoder may encode
a block of video data by determining a palette for the block,
locating an entry in the palette to represent the color value
of each pixel, and encoding the palette with index values for
the pixels mapping the pixel value to the palette. A video
decoder may obtain, from an encoded bitstream, a palette for
a block, as well as index values for the pixels of the block.
The video decoder may map the index values of the pixels
to entries of the palette to reconstruct the luma and chroma
pixel values of the block.

10026] The example above is intended to provide a general
description of palette-based coding. In various examples, the
techniques described in this disclosure may include tech-

US 2016/0373745 Al

niques for various combinations of one or more of signaling
palette-based coding modes, transmitting palettes, predict-
ing palettes, deriving palettes, and transmitting palette-based
coding maps and other syntax elements. Such techniques
may improve video coding efficiency, e.g., requiring fewer
bits to represent screen generated content.
10027] For example, according to aspects of this disclo-
sure, a video coder (video encoder or video decoder) may
code one or more syntax elements for each block that is
coded using a palette coding mode. For example, the video
coder may code a palette_mode_flag to indicate whether a
palette-based coding mode is to be used for coding a
particular block. In this example, a video encoder may
encode a palette_mode_flag with a value that is equal to one
to specify that the block currently being encoded ("current
block") is encoded using a palette mode. In this case, a video
decoder may obtain the palette_mode_flag from the encoded
bitstream and apply the palette-based coding mode to
decode the block. In instances in which there is more than
one palette-based coding mode available (e.g., there is more
than one palette-based technique available for coding), one
or more syntax elements may indicate one of a plurality of
different palette modes for the block.
10028] In some instances, the video encoder may encode
a palette_mode_flag with a value that is equal to zero to
specify that the current block is not encoded using a palette
mode. In such instances, the video encoder may encode the
block using any of a variety of inter-predictive, intra-
predictive, or other coding modes. When the palette_mode_
flag is equal to zero, the video encoder may encode addi-
tional information (e.g., syntax elements) to indicate the
specific mode that is used for encoding the respective block.
In some examples, as described below, the mode may be an
HEVC coding mode. The use of the palette_mode_flag is
described for purposes of example. In other examples, other
syntax elements such as multi-bit codes may be used to
indicate whether the palette-based coding mode is to be used
for one or more blocks, or to indicate which of a plurality of
modes are to be used.
10029] When a palette-based coding mode is used, a
palette may be transmitted by an encoder in the encoded
video data bitstream for use by a decoder. A palette may be
transmitted for each block or may be shared among a
number of blocks in a picture or slice. The palette may refer
to a number of pixel values that are dominant and/or
representative for the block, including, e.g., a luma value
and two chroma values.
10030] In some examples, a syntax element, such as a
transpose flag, may be coded to indicate whether a transpose

Dec. 22, 2016

process is applied to palette indices of a current palette. If
transpose flag is zero, the palette indices for samples may be
coded in a horizontal traverse scan. Similarly, if the trans-
pose flag is one, the palette indices for samples may be
coded in a vertical traverse scan. This can be thought of as
decoding the index values assuming horizontal traverse scan
and then transposing the block (rows to columns).
10031] Aspects of this disclosure include techniques for
coding the palette. For example, according to aspects of this
disclosure, a video encoder may encode one or more syntax
elements to define a palette. Some example syntax elements
which a video encoder may encode to define a current palette
for a current block of video data include, but are not limited
to, a syntax element that indicates whether a transpose
process is applied to palette indices of the current palette
(e.g., palette_transpose_flag) (i.e., whether the, one or more
syntax elements related to delta quantization parameter (QP)
(e.g., cu_qp_delta_palette_abs, cu_qp_delta_palette_sign_
flag, cu_chroma_qp_palette_offset_flag, and/or cu_chroma_
qp_palette_offset_idx), one or more syntax elements related
to chroma QP offsets for the current block of video data, one
or more syntax elements that indicate a number of zeros that
precede a non-zero entry in an array that indicates whether
entries from a predictor palette are reused in the current
palette (e.g., palette_predictor_run), one or more syntax
elements that indicate a number of entries in the current
palette that are explicitly signalled (e.g., num_signalled_
palette_entries), one or more syntax elements that indicate a
value of a component in a palette entry in the current palette
(e.g., palette_entry), one or more syntax elements that
indicate whether the current block of video data includes at
least one escape coded sample (e.g., palette_escape_val_
present_flag), one or more syntax elements that indicate a
number of entries in the current palette that are explicitly
signalled or inferred (e.g., num_palette_indices_idc), and
one or more syntax elements that indicate indices in an array
of current palette entries (e.g., palette_index_idc). For
example, when operating in accordance with the HEVC
Screen Content Coding (SCC) Draft 3 (Joshi et al., "High
Efficiency Video Coding (HEVC) Screen Content Coding:
Draft 3," Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, 20th Meeting: Geneva, CH, 10 Feb.-17 Feb. 2015,
Document: JCTVC-T1005, available at http://phenix.int-
evey.fr/jct/doc_end_user/documents/20_Geneva/wg 11/
JCTVC-T1005-v2.zip, (hereinafter "HEVC SCC Draft 3"),
a video coder may signal the syntax elements listed in
palette_coding() syntax table (section 7.3.8.8 of HEVC
SCC Draft 3), reproduced below as Table 1.

TABLE 1

Descriptor

palette_coding(xO, yO, nCbS) {
palettePredictionFinished = 0
NumPredictedPaletteEntries = 0
for(i = 0; i < PredictorPaletteSize && palettePredictionFinished &&
NumPredictedPaletteEntries <palette_max_size; i++
palette_predictor_run
if(palette_predictor_mn 1)

if(palette_predictor_rim > 1)
i += palette_predictor_rim - 1

PalettePredictorEntryReuseFlag[i] = 1
NumPredictedPaletteEntries++
else
palettePredictionFinished = 1

ue(v)

US 2016/0373745 Al

TABLE 1-continued

Descriptor

if(NumPredictedPaletteEntries <palette_max_size

num_signalled_palette_entries ue(v)

numComps = (ChromaArrayType = = 0)? 1 : 3

for(cldx = 0; cldx <numComps; cldx++)
for(i = 0; i <num_signalled_palette_entries; i++)

palette_entry ae(v)

if(CurrentPaletteSize 0)
palette_escape_val_present_flag ae(v)

if(palette_escape_val_present_flag) {
if(cu_cip_delta_enabled_flag && !IsCuQpDeltaCoded) {
cu_p_delta_palette_abs ae(v)

if(cu_p_delta_palette_abs)
cu_p_delta_palette_sign_flag ae(v)

if(cu_chroma_cip_offset_enabled_flag && !IsCuChromaQpOffsetCoded) {
cu_chroma_p_palette_offset_flag ae(v)

if(cu_chroma_p_offset_flag && chroma_cip_offset_list_len_minusl >

0)

cu_chroma_p_palette_offset_idx ae(v)

if(MaxPalettelndex > 0) {
palette_transpose_flag ae(v)

num_palette_indices_idc ae(v)

for(i=0; i < NumPalettelndices; i++) {
palette_index_idc ae(v)

Palettelndexldc[i] = palette_index_idc

last_palette_run_type_flag ae(v)

CurrNumlndices = 0

PaletteScanPos = 0

while(PaletteScanPos <nCbS * nCbS) {
xC = x0 + travScan[PaletteScanPos][0
yC = y0 + travScan[PaletteScanPos][1]
if(PaletteScanPos > 0) {
xcPrev = x0 + travScan[PaletteScanPos - 1][0
ycPrev = y0 + travScan[PaletteScanPos - 1][1]

PaletteRun = nCbS * nCbS - PaletteScanPos - 1

if(MaxPalettelndex > 0 && CurrNumlndices <NumPalettelndices) {
if(PaletteScanPos >= nCbS && palette_run_type_flag[xcPrev][ycPrev]

COPY_ABOVE_MODE && PaletteScanPos <nCbS * nCbS - 1)

palette_run_type_flag[xC] [yC] ae(v)

readlndex = 0

if(palette_mn_type_flag[xC] [yC] = = COPY_INDEX_MODE &&
AdjustedMaxPalettelndex > 0)

readlndex = 1

maxPaletteRun = nCbS* nCbS - PaletteScanPos - 1

if(AdjustedMaxPalettelndex > 0 &&

((CurrNumlndices + readlndex) <NumPalettelndices
palette_run_type_flag[xC] [yC] = last_palette_run_type_flag)
if(maxPaletteRun > 0) {
palette_run_msb_id_plusl ae(v)

if(palette_rim_msb_id_plusl > 1)

palette_rim_refinement_bits ae(v)

CurrNumlndices + = readlndex

runPos = 0

while (runPos < = paletteRun

xR = x0 + travScan[PaletteScanPos][0
yR = y0 + travScan[PaletteScanPos][1]
if(palette_run_type_flag[xC][yC] = = COPY_INDEX_MODE)
PaletteSampleMode[xR][yR] = COPY_INDEX_MODE
PalettelndexMap[xR][yR] = CurrPalettelndex
else

PaletteSampleMode[xR][yR] = COPY_ABOVE_MODE
PalettelndexMap[xR][yR] = PalettelndexMap[xR][yR - 1]

runPos++

PaletteScanPos++

Dec. 22, 2016

US 2016/0373745 Al

TABLE 1-continued

Descriptor

if(palette_escape_val_present_flag) {
sPos = 0
while(sPos <nCbS * nCbS) {
xC = x0 + travScan[sPos][0
yC = yO + travScan[sPos][1]
if(PalettelndexMap[xC][yC] = = MaxPalettelndex) {
for(cldx = 0; cldx <numComps; cldx++)

if(cldx = = 0
(xR%2==0&&yR%2==0&&ChromaArrayType== 1)
(xR%2==0&&ChromaArrayType==2)
ChromaArrayType = = 3) {
palette_escape_val
PaletteEscapeVal[cldx][xC][yC] = palette_escape_val

sPos++

ae(v)

10032] In addition to providing an order in which the
syntax elements are included in a bitstream, Table 1 also
provides a descriptor for each of the syntax elements that
indicates an encoding type for each syntax element. As one
example, a video encoder may encode syntax elements with
the ue(v) descriptor using unsigned integer O-th order Exp-
Golomb-codes with the left bit first. As another example, a
video encoder may encode syntax elements with the ae(v)
descriptor using context-adaptive arithmetic entropy-codes
(CABAC). When bins of a syntax element are encoded use
CABAC, a video encoder may encode one or more of the
bins using a context and/or may encode one or more of the
bins without a context. Encoding a bin using CABAC
without a context may be referred to as bypass mode. HEVC
SCC Draft 3 further provides a table (Table 9-47 of the
HEVC SCC Draft 3), partially reproduced below as Table 2,
that indicates which bins of the syntax elements listed in
Table 1 are coded with contexts (i.e., as indicated by context
"0" and context "1") and which bins are coded in bypass
mode.

Dec. 22, 2016

before cu_qp_delta_palette_abs (i.e., num_signalled_pal-
ette_entries, palette_entry, and palette_escape_val_present_
flag) are bypass-coded. Similarly, syntax elements after
palette_transpose_flag and before last_palette_run_type_f-
lag (i.e., num_palette_indices_idc and palette_index_idc)
are also bypass coded.
10034] When encoding a bin using CABAC with a con-
text, a video encoder may load the context from storage into
memory. In some examples, a video encoder may have
limited memory resources available and/or it may be time
consuming to load a context into memory. As such, it may
be desirable for a video encoder to minimize the amount of
times contexts are loaded into memory. In some examples,
grouping bypass bins together may reduce the amount of
times contexts are loaded into memory, which may increase
CABAC throughput.
10035] In Ye et al., "CE1-related: Palette Mode Context
and Codeword Simplification," Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11,21st Meeting: Warsaw, P L, 19-26 Jun.

Syntax element 0 1

binldx

2 3 4 >= 5

palette_predictor_run bypass bypass bypass bypass bypass bypass
nun_signalled_palette_entries bypass bypass bypass bypass bypass bypass
palette_entry bypass bypass bypass bypass bypass bypass
palette_escape_vaLpresent_flag bypass na na na na na
cu_ij_delta_palette_abs 0 1 1 1 1 bypass
cu delta_palette_sign_flag bypass na na na na na
cuchroma_p_palette_offset_flag 0 na na na na na
cuchroma_p_palette_offset_idx 0 0 0 0 0 na
palette_transpose_flag 0 na na na na na
num_palette_indices_idc bypass bypass bypass bypass bypass bypass
last_palette_rim_type_flag 0 na na na na na
palette_mn_type_flag 0 na Na na na na
palette_index_idc bypass bypass bypass bypass bypass bypass
palettemn_msb_id_plus 1 (clause 9.3.4.2.8)
palette_mn_refinement_bits bypass bypass bypass bypass bypass bypass
palette escapev bypass bypass bypass bypass bypass bypass

10033] A comparison of Tablel and Table 2 shows that 2015, Document: JCTVC-U0090, available at http://phenix.
HEVC SCC Draft 3 prescribes that all the syntax elements it-sudparis.eu/jct/doc_end_user/documents/21_Warsaw/

US 2016/0373745 Al

wgll/JCTVC-U0090-vl.zip (hereinafter, "JCTVC-
U0090"), it was proposed that the palette_transpose_flag be
signalled after the last_palette_run_type_flag. Specifically,
JCTVC-U0090 proposes modifying the palette coding(
syntax table as shown below in Table 3 (where text in italics
is inserted and text in [[double bracket italics]] is deleted).

TABLE 3

if(MaxPalettelndex > 0) {
[[palette_transposeflag]] [[ae(v)]]
num_palette_indices_idc ae(v)
for(i=0; i <NumPalettelndices; i++) {

palette_index_idc ae(v)
Palettelndexldc[ii = palette_index_idc

last_palette_mn_type_flag ae(v)
palette_transpose Jiag ae(v)

10036] However, in some examples, the arrangement of
syntax elements proposed by JCTVC-U0090 may not be
optimal. For instance, when syntax elements related to delta
QP (i.e., cu_qp_delta_palette_abs and cu_qp_delta_palette_
sign_flag) and chroma QP offset (i.e., cu_chroma_qp_pal-
ette_offset_flag and cu_chroma_qp_palette_offset_idx) are

Dec. 22, 2016

present, the arrangement of syntax elements proposed by
JCTVC-U0090 may not result in grouping of any additional
bypass bins.
10037] In accordance with one or more techniques of this
disclosure, a video encoder may encode the syntax elements
used to define a current palette such that syntax elements that
are encoded using bypass mode are consecutively encoded.
For instance, as opposed to encoding one or more syntax
elements related to delta quantization parameter (QP) and/or
chroma QP offsets for a current block of video data before
a syntax element that indicates whether a transpose process
is applied to palette indices of a palette for the current block
of video data, a video encoder may encode the one or more
syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data after the syntax
element that indicates whether a transpose process is applied
to the palette indices of the palette for the current block of
video data.
10038] One example of how the palette coding() syntax
table may be modified to move the signalling of the syntax
elements related to delta QP and chroma QP offsets after the
palette_transpose_flag is shown below in Table 4 (where text
in italics is inserted and text in [[double bracket italics]] is
deleted relative to a previous version of Table 4 in HEVC
SCC Draft 3).

TABLE 4

Descriptor

palette_coding(x0, y0, nCbS) {
palettePredictionFinished = 0
NumPredictedPaletteEntries = 0
for(i = 0; i < PredictorPaletteSize && palettePredictionFinished &&

NumPredictedPaletteEntries < palette_max_size; i++
palette_predictor_mn ue(v)
if(palette_predictor_rim 1)

if(palette_predictor_rim > 1)
i += palette_predictor_run 1

PalettePredictorEntryReuseFlag[i] = 1
NumPredictedPaletteEntries++
else
palettePredictionFinished = 1

if(NumPredictedPaletteEntries <palette_max_size
num_signalled_palette_entries ue(v)

numComps = (ChromaArrayType = = 0) ? 1 3
for(cldx = 0; cldx <numComps; cldx++)

for(i = 0; i < num_signalled_palette_entries; i++)
palette_entry ae(v)

if(CurrentPaletteSize 0)
palette_escape_val_present_flag ae(v)

[[U(palette_escape_val.presentflag) {]]
[[U(cu_qp_clelta_enablecljlag && !IsCuQpDeltaCoc1ec1) {]]
[[cu_qp_clelta.palette_abs]] [[ae(v)]]

[[f cu_cjp_delta.palette_abs)]]
[[cu_qp_clelta.palette_signjlag]] [[ae(v)]]

[[}]]
[[U(cu_chroma_qp_offset_enabledjlag && !IsCuChromaQpOffsetCoc1ec1) {]]
[[cu_chroma_cjp.palette_offsetjlag]] [[ae(v)]]

[[f cu_chroma_cjp_offsetjlag && chroma_cjp_offset_list_len_minusl > 0)]]
[[cu_chroma_qp.palette_offset_idx]] [[ae(v)]]

[[}]]
[[}]]
if(MaxPalettelndex > 0) {

[[palette_transpose Jiag]] [[ae(v)]]
num_palette_indices_idc ae(v)
for(i=0; i < NumPalettelndices; i++) {

palette_index_idc ae(v)
Palettelndexldc[i] = palette_index_idc

last_palette_rim_type_flag ae(v)
palette_transposeflag ae(v)

US 2016/0373745 Al

7

TABLE 4-continued

Descriptor

f(palette_escape_val.presentjlag) {
U(cu_qp_delta_enablecljlag && !IsCuQpDeltaCoc1ec1) {
cu_qp_de1ta.palette_abs ae(v)
Ui cu_cjp_delta.palette_abs)
cu_qp_clelta.palette_signjlag ae(v)

U(cu_chroma_qp_offset_enabledjlag && !IsCuChromaQpOffsetCodec1) {
cu_chroma_cjp.palette_offsetjlag

cu_chroma_qp_offsetjlag && chroma_qp_offset_list_len_minusl > 0)
cu_chroma_qp.palette_offset_idx

ae(v)

ae(v)

CurrNumlndices = 0
PaletteScanPos = 0

10039] By moving the one or more syntax elements related
to delta QP and/or chroma QP offsets for the current block
of video data after the syntax element that indicates whether
a transpose process is applied to the palette indices of the
palette for the current block of video data, the video encoder
may group together (i.e., consecutively encode) a larger
number of syntax elements that are coded using bypass
mode. For example, by moving the one or more syntax
elements related to delta QP and/or chroma QP offsets for
the current block of video data after the syntax element that
indicates whether a transpose process is applied to the
palette indices of the palette for the current block of video
data, the video encoder may group together one or more
syntax elements that indicate a number of entries in the
current palette that are explicitly signalled or inferred (e.g.,
num_palette_indices_idc) and one or more syntax elements
that entriesindices in an array of current palette entries (e.g.,
palette_index_idc) with one or more syntax elements related
to chroma QP offsets for the current block of video data, one
or more syntax elements that indicate a number of zeros that
precede a non-zero entry in an array that indicates whether
entries from a predictor palette are reused in the current
palette (e.g., palette_predictor_run), one or more syntax
elements that indicate a number of entries in the current

Dec. 22, 2016

palette that are explicitly signalled (e.g., num_signalled_
palette_entries), one or more syntax elements that indicate a
value of a component in a palette entry in the current palette
(e.g., palette_entry), and one or more syntax elements that
indicate whether the current block of video data includes at
least one escape coded sample (e.g., palette_escape_val_
present_flag). In this way, the techniques of this disclosure
may increase CABAC throughput, which may reduce the
time needed to encode video data using palette mode encod-
ing. For instance, by grouping together the bypass coded
syntax elements, a video coder may sequentially encode the
grouped syntax elements using without starting, stopping,
restarting, reloading, and resetting a CABAC coding engine
10040] Table 4 is only one example of how the syntax
elements may be arranged. In some examples, the syntax
elements related to delta QP and chroma QP offset may be
moved further down the syntax table. For example, the
syntax elements related to delta QP and chroma QP offset
could be placed just before the component values for escape
samples (i.e., palette_escape_val). One example of how the
syntax elements related to delta QP and chroma QP offset
could be placed just before the component values for escape
samples is shown below in Table 5 (where text in italics is
inserted and text in [[double bracket italics]] is deleted
relative to HEVC SCC Draft 3).

TABLE 5

Descriptor

palette_coding(x0, yO, nCbS) {
palettePredictionFinished = 0
NumPredictedPaletteEntries = 0
for(i = 0; i < PredictorPaletteSize && palettePredictionFinished &&

NumPredictedPaletteEntries < palette_max_size; i++
palette_predictor_run
if(palette_predictor_run 1)

if(palette_predictor_run > 1)
i += palette_predictor_rim - 1

PalettePredictorEntryReuseFlag[i] = 1
NumPredictedPaletteEntries++
else
palettePredictionFinished = 1

if(NumPredictedPaletteEntries <palette_max_size

num_signalled_palette_entries

numComps = (ChromaArrayType = = 0) ? 1 : 3

for(cldx = 0; cldx <numComps; cldx++)
for(i = 0; i <num_signalled_palette_entries; i++)

ue(v)

ue(v)

US 2016/0373745 Al

TABLE 5-continued

Descriptor

palette_entry ae(v)

if(CurrentPaletteSize 0)
palette_escape_val_present_flag ae(v)

[[U(palette_escape_va1.presentjlag) {]]
[[U(cu_qp_delta_enabledjlag && !IsCuQpDeltaCoc1ec1) {]]
[[cu_cjp_clelta.palette_abs]] [[ae(v)]]

[[U(cu_qp_clelta.palette_abs)]]
[[cu_cjp_clelta.palette_signflag]] [[ae(v)]]

[[U(cu_chroma_qp_offset_enablecljlag && !IsCuChromaQpOffsetCodec1) {]]
[[cu_chroma_qp.palette_offsetflag]] [[ae(v)]]

[[U(cu_chroma_cjp_offsetflag && chroma_cjp_offset_list_len_minusl > 0)]]
[[cu_chroma_qp.palette_offset_i clx]] [[ae(v)]]

if(MaxPalettelndex > 0) {
[[palcttctransposcjlagjj [[ac()JJ

num_palette_indices_idc ae(v)

for(i=0; i <NumPalettelndices; i++) {
palette_index_idc ae(v)

Palettelndexldc[ii = palette_index_idc

last_palette_mn_type_flag ae(v)

palette_transpose Jiag ae(v)

CurrNumlndices = 0
PaletteScanPos = 0
while(PaletteScanPos <nCbS * nCbS) {

xC = x0 + travScan[PaletteScanPos][0
yC = y0 + travScan[PaletteScanPos][1]
if(PaletteScanPos > 0) {
xcPrev = x0 + travScan[PaletteScanPos 1][0
ycPrev = y0 + travScan[PaletteScanPos 1][1]

PaletteRun = nCbS * nCbS PaletteScanPos 1

if(MaxPalettelndex > 0 && CurrNumlndices <NumPalettelndices) {
if(PaletteScanPos >= nCbS && palette_mn_type_flag[xcPrev][ycPrev]

COPY_ABOVE_MODE && PaletteScanPos <nCbS * nCbS 1)

palette_mn_type_flag[xC] [yC] ae(v)

readlndex = 0

if(palette_mn_type_flag[xC] [yC] = = COPY_INDEX_MODE &&
AdjustedMaxPalettelndex > 0)

readlndex = 1

maxPaletteRun = nCbS * nCbS PaletteScanPos 1

if(AdjustedMaxPalettelndex > 0 &&

((CurrNumlndices + readlndex) <NumPalettelndices
palette_mn_type_flag[xC] [yC]!= last_palette_run_type_flag)
if(maxPaletteRun > 0) {
palette_rim_msb_id_plusl ae(v)

if(palette_rim_msb_id_plusl > 1)

palette_rim_refinement_bits ae(v)

CurrNumlndices + = readlndex

runPos = 0

while (runPos < = paletteRun

xR = x0 + travScan[PaletteScanPos][0
yR = y0 + travScan[PaletteScanPos][1]
if(palette_run_type_flag[xC][yC] = = COPY_INDEX_MODE)
PaletteSampleMode[xR][yR] = COPY_INDEX_MODE
PalettelndexMap[xR][yR] = CurrPalettelndex

else

PaletteSampleMode[xR][yR] = COPY_ABOVE_MODE
PalettelndexMap[xR][yR] = PalettelndexMap[xR][yR 1]

mnPos++

PaletteScanPos++

if(palette_escape_val_present_flag) {
f(cu_qp_delta_enablecljlag && !IsCuQpDeltaCocled) {
cu_qp_de1ta.palette_abs ae(v)

cu_cjp_clelta.palette_abs)
cu_qp_de1ta.palette_signjlag ae(v)

Dec. 22, 2016

US 2016/0373745 Al

TABLE 5-continued

;sJ

Dec. 22, 2016

Descriptor

U(cu_chroma_qp_offset_enabledjlag && !IsCuChromaQpOffsetCodec1) {
cu_chroma_cjp .palette_offsetjlag ae(v)

cu_chroma_qp_offsetjlag && chroma_qp_offset_list_len_minusl > 0)

cu_chroma_qp .palette_offset_idx ae(v)

sPos = 0

while(sPos <nCbS * nCbS) {
xC = x0 + travScan[sPos][0
yC = yO + travScan[sPos][1]
if(PalettelndexMap[xC][yC] = = MaxPalettelndex) {
for(cldx = 0; cldx <numComps; cldx++)

if(cldx = = 0

(xR%2==0 &&yR%2==0&&ChromaArrayType== 1)

(xR%2==0&&ChromaArrayType==2)

ChromaArrayType = = 3) {
palette_escape_val ae(v)

PaletteEscapeVal[cldx][xC][yC] = palette_escape_val

sPos++

}

10041] The techniques for palette-based coding of video
data may be used with one or more other coding techniques,
such as techniques for inter- or intra-predictive coding. For
example, as described in greater detail below, an encoder or
decoder, or combined encoder-decoder (codec), may be
configured to perform inter- and intra-predictive coding, as
well as palette-based coding.

10042] In some examples, the palette-based coding tech-
niques may be configured for use with one or more video
coding standards. Some example video coding standards
include, but are not limited to, ITU-T H.261, ISO/IEC
MPEG-i Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,
ITIJ-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264
(also known as ISO/IEC MPEG-4 AVC), including its
Scalable Video Coding (SVC) and Multiview Video Coding
(MYC) extensions.

10043] Recently, the design of a new video coding stan-
dard, namely High-Efficiency Video Coding (HEVC), has
been finalized by the Joint Collaboration Team on Video
Coding (JCT-VC) of ITU-T Video Coding Experts Group
(VCEG) and ISO/IEC Motion Picture Experts Group
(MPEG). A copy of the finalized HEVC standard (i.e.,
ITIJ-T H.265, Series H: AUDIOVISUAL AND MIJLTIME-
DIA SYSTEMS Infrastructure of audiovisual services—
Coding of moving video, April, 20i5) is available at https://
www.itu.int/rec/T-REC-H.265-20i 504-I/en, (hereinafter the
"HEVC Standard".

10044] A Range Extension to HEVC, namely HEVC
Screen Content Coding (SCC), is also being developed by
the JCT-VC. A recent draft of HEVC SCC (Joshi et al.,
"High Efficiency Video Coding (HEVC) Screen Content
Coding: Draft 4," Joint Collaborative Team on Video Cod-
ing (JCT-VC) of ITU-T SG i6 WP 3 and ISO/IEC JTC i/SC
29/WG ii, 2ist Meeting: Warsaw, P L, i9 Jun.-i6 Jun.
20i5, is available from http://phenix.it-sudparis.eu/jct/doc_
end_user/documents/2 i_Warsaw/wgi i/JCTVC-Ui 005-v2.
zip, (hereinafter "HEVC SCC Draft 4").

10045] With respect to the HEVC framework, as an
example, the palette-based coding techniques may be con-

figured to be used as a coding unit (CU) mode. In other
examples, the palette-based coding techniques may be con-
figured to be used as a prediction unit (PU) mode in the
framework of HEVC. Accordingly, all of the following
disclosed processes described in the context of a CU mode
may, additionally or alternatively, apply to PU. However,
these HEVC-based examples should not be considered a
restriction or limitation of the palette-based coding tech-
niques described herein, as such techniques may be applied
to work independently or as part of other existing or yet to
be developed systems/standards. In these cases, the unit for
palette coding can be square blocks, rectangular blocks, or
even regions of non-rectangular shape.

10046] FIG. 1 is a block diagram illustrating an example
video coding system 10 that may utilize the techniques of
this disclosure. As used herein, the term "video coder" refers
generically to both video encoders and video decoders. In
this disclosure, the terms "video coding" or "coding" may
refer generically to video encoding or video decoding. Video
encoder 20 and video decoder 30 of video coding system 10
represent examples of devices that may be configured to
perform techniques for palette-based video coding in accor-
dance with various examples described in this disclosure.
For example, video encoder 20 and video decoder 30 may be
configured to selectively code various blocks of video data,
such as CU's or PU's in HEVC coding, using either palette-
based coding or non-palette based coding. Non-palette based
coding modes may refer to various inter-predictive temporal
coding modes or intra-predictive spatial coding modes, such
as the various coding modes specified by the HEVC Stan-
dard.

10047] As shown in FIG. 1, video coding system 10
includes a source device 12 and a destination device 14.
Source device 12 generates encoded video data. Accord-
ingly, source device 12 may be referred to as a video
encoding device or a video encoding apparatus. Destination
device 14 may decode the encoded video data generated by
source device 12. Accordingly, destination device 14 may be
referred to as a video decoding device or a video decoding

US 2016/0373745 Al

apparatus. Source device 12 and destination device 14 may
be examples of video coding devices or video coding
apparatuses.

10048] Source device 12 and destination device 14 may
comprise a wide range of devices, including desktop com-
puters, mobile computing devices, notebook (e.g., laptop)
computers, tablet computers, set-top boxes, telephone hand-
sets such as so-called "smart" phones, televisions, cameras,
display devices, digital media players, video gaming con-
soles, in-car computers, or the like.

10049] Destination device 14 may receive encoded video
data from source device 12 via a channel 16. Channel 16
may comprise one or more media or devices capable of
moving the encoded video data from source device 12 to
destination device 14. In one example, channel 16 may
comprise one or more communication media that enable
source device 12 to transmit encoded video data directly to
destination device 14 in real-time. In this example, source
device 12 may modulate the encoded video data according
to a communication standard, such as a wireless communi-
cation protocol, and may transmit the modulated video data
to destination device 14. The one or more communication
media may include wireless and/or wired communication
media, such as a radio frequency (RF) spectrum or one or
more physical transmission lines. The one or more commu-
nication media may form part of a packet-based network,
such as a local area network, a wide-area network, or a
global network (e.g., the Internet). The one or more com-
munication media may include routers, switches, base sta-
tions, or other equipment that facilitate communication from
source device 12 to destination device 14.

10050] In another example, channel 16 may include a
storage medium that stores encoded video data generated by
source device 12. In this example, destination device 14 may
access the storage medium via disk access or card access.
The storage medium may include a variety of locally-
accessed data storage media such as Blu-ray discs, DVDs,
CD-ROMs, flash memory, or other suitable digital storage
media for storing encoded video data.

10051] In a further example, channel 16 may include a file
server or another intermediate storage device that stores
encoded video data generated by source device 12. In this
example, destination device 14 may access encoded video
data stored at the file server or other intermediate storage
device via streaming or download. The file server may be a
type of server capable of storing encoded video data and
transmitting the encoded video data to destination device 14.
Example file servers include web servers (e.g., for a web-
site), file transfer protocol (FTP) servers, network attached
storage (NAS) devices, and local disk drives.

10052] Destination device 14 may access the encoded
video data through a standard data connection, such as an
Internet connection. Example types of data connections may
include wireless channels (e.g., Wi-Fi connections), wired
connections (e.g., DSL, cable modem, etc.), or combinations
of both that are suitable for accessing encoded video data
stored on a file server. The transmission of encoded video
data from the file server may be a streaming transmission, a
download transmission, or a combination of both.

10053] The techniques of this disclosure are not limited to
wireless applications or settings. The techniques may be
applied to video coding in support of a variety of multimedia
applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmis-

Dec. 22, 2016
10

sions, streaming video transmissions, e.g., via the Internet,
encoding of video data for storage on a data storage medium,
decoding of video data stored on a data storage medium, or
other applications. In some examples, video coding system
10 may be configured to support one-way or two-way video
transmission to support applications such as video stream-
ing, video playback, video broadcasting, and/or video tele-
phony.

10054] FIG. 1 is merely an example and the techniques of
this disclosure may apply to video coding settings (e.g.,
video encoding or video decoding) that do not necessarily
include any data communication between the encoding and
decoding devices. In other examples, data is retrieved from
a local memory, streamed over a network, or the like. A
video encoding device may encode and store data to
memory, and/or a video decoding device may retrieve and
decode data from memory. In many examples, the encoding
and decoding is performed by devices that do not commu-
nicate with one another, but simply encode data to memory
and/or retrieve and decode data from memory. Source device
12 and destination device 14 may comprise any of a wide
range of devices, including desktop computers, notebook
(i.e., laptop) computers, tablet computers, set-top boxes,
appliances, telephone handsets such as so-called "smart"
phones, so-called "smart" pads, televisions, cameras, dis-
play devices, digital media players, video gaming consoles,
video streaming device, or the like. In some cases, source
device 12 and destination device 14 may be equipped for
wireless communication.

10055] Destination device 14 may receive the encoded
video data to be decoded via a link 16. Link 16 may
comprise any type of medium or device capable of moving
the encoded video data from source device 12 to destination
device 14. In one example, link 16 may comprise a com-
munication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in
real-time. The encoded video data may be modulated
according to a communication standard, such as a wireless
communication protocol, and transmitted to destination
device 14. The communication medium may comprise any
wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmis-
sion lines. The communication medium may form part of a
packet-based network, such as a local area network, a
wide-area network, or a global network such as the Internet.
The communication medium may include routers, switches,
base stations, or any other equipment that may be useful to
facilitate communication from source device 12 to destina-
tion device 14.

10056] Alternatively, encoded data may be output from
output interface 22 to a storage device 19. Similarly,
encoded data may be accessed from storage device 19 by
input interface. Storage device 19 may include any of a
variety of distributed or locally accessed data storage media
such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, flash
memory, volatile or non-volatile memory, or any other
suitable digital storage media for storing encoded video
data. In a further example, storage device 19 may corre-
spond to a file server or another intermediate storage device
that may hold the encoded video generated by source device
12. Destination device 14 may access stored video data from
storage device 19 via streaming or download. The file server
may be any type of server capable of storing encoded video
data and transmitting that encoded video data to the desti-

US 2016/0373745 Al

nation device 14. Example file servers include a web server
(e.g., for a website), an FTP server, network attached storage
(NAS) devices, or a local disk drive. Destination device 14
may access the encoded video data through any standard
data connection, including an Internet connection. This may
include a wireless channel (e.g., a Wi-Fi connection), a
wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded
video data stored on a file server. The transmission of
encoded video data from storage device 19 may be a
streaming transmission, a download transmission, or a com-
bination of both.

10057] The techniques of this disclosure are not necessar-
ily limited to wireless applications or settings. The tech-
niques may be applied to video coding in support of any of
a variety of multimedia applications, such as over-the-air
television broadcasts, cable television transmissions, satel-
lite television transmissions, streaming video transmissions,
e.g., via the Internet, encoding of digital video for storage on
a data storage medium, decoding of digital video stored on
a data storage medium, or other applications. In some
examples, system 10 may be configured to support one-way
or two-way video transmission to support applications such
as video streaming, video playback, video broadcasting,
and/or video telephony.

10058] In the example of FIG. 1, source device 12 includes
a video source 18, video encoder 20 and an output interface
22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In
source device 12, video source 18 may include a source such
as a video capture device, e.g., a video camera, a video
archive containing previously captured video, a video feed
interface to receive video from a video content provider,
and/or a computer graphics system for generating computer
graphics data as the source video, or a combination of such
sources. As one example, if video source 18 is a video
camera, source device 12 and destination device 14 may
form so-called camera phones or video phones. However,
the techniques described in this disclosure may be applicable
to video coding in general, and may be applied to wireless
and/or wired applications.

10059] The captured, pre-captured, or computer-generated
video may be encoded by video encoder 20. The encoded
video data may be transmitted directly to destination device
14 via output interface 22 of source device 12. The encoded
video data may also (or alternatively) be stored onto storage
device 19 for later access by destination device 14 or other
devices, for decoding and/or playback.

10060] Destination device 14 includes an input interface
28, a video decoder 30, and a display device 32. In some
cases, input interface 28 may include a receiver and/or a
modem. Input interface 28 of destination device 14 receives
the encoded video data over link 16. The encoded video data
communicated over link 16, or provided on storage device
19, may include a variety of syntax elements generated by
video encoder 20 for use by a video decoder, such as video
decoder 30, in decoding the video data. Such syntax ele-
ments may be included with the encoded video data trans-
mitted on a communication medium, stored on a storage
medium, or stored a file server.

10061] Display device 32 may be integrated with, or
external to, destination device 14. In some examples, des-
tination device 14 may include an integrated display device
and also be confgured to interface with an external display

Dec. 22, 2016
11

device. In other examples, destination device 14 may be a
display device. In general, display device 32 displays the
decoded video data to a user, and may comprise any of a
variety of display devices such as a liquid crystal display
(LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

10062] Video encoder 20 and video decoder 30 may oper-
ate according to a video compression standard, such as the
recently finalized HEVC standard (and various extensions
thereof presently under development). Alternatively, video
encoder 20 and video decoder 30 may operate according to
other proprietary or industry standards, such as the ITU-T
H.264 standard, alternatively referred to as MPEG-4, Part
10, Advanced Video Coding (AVC), or extensions of such
standards. The techniques of this disclosure, however, are
not limited to any particular coding standard. Other
examples of video compression standards include VP8, and
VP9.

10063] Although not shown in FIG. 1, in some aspects,
video encoder 20 and video decoder 30 may each be
integrated with an audio encoder and decoder, and may
include appropriate MUX-DEMUX units, or other hardware
and software, to handle encoding of both audio and video in
a common data stream or separate data streams. If appli-
cable, in some examples, MUIX-DEMUIX units may con-
form to the IT1J H.223 multiplexer protocol, or other pro-
tocols such as the user datagram protocol (UDP).

10064] Video encoder 20 and video decoder 30 each may
be implemented as any of a variety of suitable encoder
circuitry, such as one or more integrated circuits including
microprocessors, digital signal processors (DSPs), applica-
tion specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware,
firmware, or any combinations thereof. When the techniques
are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory
computer-readable medium and execute the instructions in
hardware such as integrated circuitry using one or more
processors to perform the techniques of this disclosure. Each
of video encoder 20 and video decoder 30 may be included
in one or more encoders or decoders, either of which may be
integrated as part of a combined encoder/decoder (CODEC)
in a respective device.

10065] As introduced above, the JCT-VC has recently
finalized development of the HEVC standard. The HEVC
standardization efforts were based on an evolving model of
a video coding device referred to as the HEVC Test Model
(HM). The HM presumes several additional capabilities of
video coding devices relative to existing devices according
to, e.g., IT1J-T H.264/AVC. For example, whereas H.264
provides nine intra-prediction encoding modes, the HM may
provide as many as thirty-five intra-prediction encoding
modes.

10066] In HEVC and other video coding specifications, a
video sequence typically includes a series of pictures. Pic-
tures may also be referred to as "frames." A picture may
include three sample arrays, denoted 5L' 5cb' and S . 5L is
a two-dimensional array (i.e., a block) of luma samples. 5Cb
is a two-dimensional array of Cb chrominance samples. S
is a two-dimensional array of Cr chrominance samples.
Chrominance samples may also be referred to herein as
"chroma" samples. In other instances, a picture may be
monochrome and may only include an array of luma
samples.

US 2016/0373745 Al

10067] To generate an encoded representation of a picture,
video encoder 20 may generate a set of coding tree units
(CTIJs). Each of the CTUs may comprise a coding tree
block of luma samples, two corresponding coding tree
blocks of chroma samples, and syntax structures used to
code the samples of the coding tree blocks. In monochrome
pictures or pictures having three separate color planes, a
CTU may comprise a single coding tree block and syntax
structures used to code the samples of the coding tree block.
A coding tree block may be an NxN block of samples. A
CTU may also be referred to as a "tree block" or a LCU. The
CTUs of HEVC may be broadly analogous to the macrob-
locks of other standards, such as H.264/AVC. However, a
CTU is not necessarily limited to a particular size and may
include one or more coding units (CUs). A slice may include
an integer number of CTUs ordered consecutively in a raster
scan order.

10068] To generate a coded CTU, video encoder 20 may
recursively perform quad-tree partitioning on the coding tree
blocks of a CTU to divide the coding tree blocks into coding
blocks, hence the name "coding tree units." A coding block
may be an NxN block of samples. A CU may comprise a
coding block of luma samples and two corresponding coding
blocks of chroma samples of a picture that has a luma
sample array, a Cb sample array, and a Cr sample array, and
syntax structures used to code the samples of the coding
blocks. In monochrome pictures or pictures having three
separate color planes, a CU may comprise a single coding
block and syntax structures used to code the samples of the
coding block.

10069] Video encoder 20 may partition a coding block of
a CU into one or more prediction blocks. A prediction block
is a rectangular (i.e., square or non-square) block of samples
on which the same prediction is applied. A prediction unit
(PU) of a CU may comprise a prediction block of luma
samples, two corresponding prediction blocks of chroma
samples, and syntax structures used to predict the prediction
blocks. In monochrome pictures or pictures having three
separate color planes, a PU may comprise a single prediction
block and syntax structures used to predict the prediction
block. Video encoder 20 may generate predictive luma, Cb,
and Cr blocks for luma, Cb, and Cr prediction blocks of each
PU of the CU.

10070] Video encoder 20 may use intra prediction or inter
prediction to generate the predictive blocks for a PU. If
video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate
the predictive blocks of the PU based on decoded samples of
the picture associated with the PU. If video encoder 20 uses
inter prediction to generate the predictive blocks of a PU,
video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of one or more pictures other
than the picture associated with the PU.

10071] After video encoder 20 generates predictive luma,
Cb, and Cr blocks for one or more PUs of a CU, video
encoder 20 may generate a luma residual block for the CU.
Each sample in the CU's luma residual block indicates a
difference between a luma sample in one of the CU's
predictive luma blocks and a corresponding sample in the
CU' s original luma coding block. In addition, video encoder
20 may generate a Cb residual block for the CU. Each
sample in the CU's Cb residual block may indicate a
difference between a Cb sample in one of the CU's predic-
tive Cb blocks and a corresponding sample in the CU's

Dec. 22, 2016
12

original Cb coding block. Video encoder 20 may also
generate a Cr residual block for the CU. Each sample in the
CU's Cr residual block may indicate a difference between a
Cr sample in one of the CU's predictive Cr blocks and a
corresponding sample in the CU's original Cr coding block.

10072] Furthermore, video encoder 20 may use quad-tree
partitioning to decompose the luma, Cb, and Cr residual
blocks of a CU into one or more luma, Cb, and Cr transform
blocks. A transform block is a rectangular (e.g., square or
non-square) block of samples on which the same transform
is applied. A transform unit (TIJ) of a CU may comprise a
transform block of luma samples, two corresponding trans-
form blocks of chroma samples, and syntax structures used
to transform the transform block samples. Thus, each TU of
a CU may be associated with a luma transform block, a Cb
transform block, and a Cr transform block. The luma trans-
form block associated with the TU may be a sub-block of the
CU's luma residual block. The Cb transform block may be
a sub-block of the CU's Cb residual block. The Cr transform
block may be a sub-block of the CU's Cr residual block. In
monochrome pictures or pictures having three separate color
planes, a TU may comprise a single transform block and
syntax structures used to transform the samples of the
transform block.

10073] Video encoder 20 may apply one or more trans-
forms to a luma transform block of a TU to generate a luma
coefficient block for the TU. A coefficient block may be a
two-dimensional array of transform coefficients. A transform
coefficient may be a scalar quantity. Video encoder 20 may
apply one or more transforms to a Cb transform block of a
TU to generate a Cb coefficient block for the TU. Video
encoder 20 may apply one or more transforms to a Cr
transform block of a TU to generate a Cr coefficient block
for the TIJ.

10074] After generating a coefficient block (e.g., a luma
coefficient block, a Cb coefficient block or a Cr coefficient
block), video encoder 20 may quantize the coefficient block.
Quantization generally refers to a process in which trans-
form coefficients are quantized to possibly reduce the
amount of data used to represent the transform coefficients,
providing further compression. After video encoder 20
quantizes a coefficient block, video encoder 20 may entropy
encode syntax elements indicating the quantized transform
coefficients. For example, video encoder 20 may perform
Context-Adaptive Binary Arithmetic Coding (CABAC) on
the syntax elements indicating the quantized transform coef-
ficients.

10075] Video encoder 20 may output a bitstream that
includes a sequence of bits that forms a representation of
coded pictures and associated data. The bitstream may
comprise a sequence of NAL units. A NAL unit is a syntax
structure containing an indication of the type of data in the
NAL unit and bytes containing that data in the form of a
RBSP interspersed as necessary with emulation prevention
bits. Each of the NAL units includes a NAL unit header and
encapsulates a RBSP. The NAL unit header may include a
syntax element that indicates a NAL unit type code. The
NAL unit type code specified by the NAL unit header of a
NAL unit indicates the type of the NAL unit. A RBSP may
be a syntax structure containing an integer number of bytes
that is encapsulated within a NAL unit. In some instances,
an RBSP includes zero bits.

10076] Different types of NAL units may encapsulate
different types of RBSPs. For example, a first type of NAL

US 2016/0373745 Al

unit may encapsulate an RBSP for a PPS, a second type of
NAL unit may encapsulate an RBSP for a coded slice, a third
type of NAL unit may encapsulate an RBSP for SEI mes-
sages, and so on. NAL units that encapsulate RBSPs for
video coding data (as opposed to RBSPs for parameter sets
and SEI messages) may be referred to as VCL NAL units.

10077] Video decoder 30 may receive a bitstream gener-
ated by video encoder 20. In addition, video decoder 30 may
parse the bitstream to obtain syntax elements from the
bitstream. Video decoder 30 may reconstruct the pictures of
the video data based at least in part on the syntax elements
obtained from the bitstream. The process to reconstruct the
video data may be generally reciprocal to the process
performed by video encoder 20. In addition, video decoder
30 may inverse quantize coefficient blocks associated with
TUs of a current CU. Video decoder 30 may perform inverse
transforms on the coefficient blocks to reconstruct transform
blocks associated with the TUs of the current CU. Video
decoder 30 may reconstruct the coding blocks of the current
CU by adding the samples of the predictive blocks for PUs
of the current CU to corresponding samples of the transform
blocks of the TUs of the current CU. By reconstructing the
coding blocks for each CU of a picture, video decoder 30
may reconstruct the picture.

10078] In some examples, video encoder 20 and video
decoder 30 may be configured to perform palette-based
coding. For example, in palette based coding, rather than
performing the intra-predictive or inter-predictive coding
techniques described above, video encoder 20 and video
decoder 30 may code a so-called palette as a table of color
values for representing the video data of the particular area
(e.g., a given block). Each pixel may be associated with an
entry in the palette that represents the color of the pixel, e.g.,
with a luma (Y) value and chroma (Cb and Cr) values. For
example, video encoder 20 and video decoder 30 may code
an index that relates the pixel value to the appropriate value
in the palette.

10079] In the example above, video encoder 20 may
encode a block of video data by determining a palette for the
block, locating an entry in the palette to represent the value
of each pixel, and encoding the palette with index values for
the pixels relating the pixel value to the palette. Video
decoder 30 may obtain, from an encoded bitstream, a palette
for a block, as well as index values for the pixels of the
block. Video decoder 30 may relate the index values of the
pixels to entries of the palette to reconstruct the pixel values
of the block.

10080] Aspects of this disclosure are directed to palette
derivation, which may occur at the encoder and at the
decoder. As one example, video encoder 20 may derive a
palette for a current block by deriving a histogram of the
pixels in the current block. In some examples, the histogram
may be expressed as H={(v,,f,), i={O, 1, 2.....M}} where
M+ 1 is the number of different pixel values in the current
block, v is pixel value, and f, is the number of occurrence of
v (i.e., how many pixels in the current block have pixel
value vi). In such examples, the histogram generally repre-
sents a number of times that a pixel value occurs in the
current block.

10081] Video encoder 20 may initialize one or more vari-
ables when deriving the histogram. As one example, video
encoder 20 may initialize a palette index idx to 0, (i.e., set
idx=O). As another example, video encoder 20 may initialize
the palette P to be empty (i.e., P=O, set j=O.).

Dec. 22, 2016
13

10082] Video encoder 20 may sort the histogram, e.g., in
descending order, such that pixels having more occurrences
are placed near the front of a list of values. For instance,
video encoder 20 may sort H according to the descending
order of f and the ordered list may be expressed as
f), i={O, 1,2.....M}, f~f 1}. In this example, the ordered
list includes the most frequently occurring pixel values at the
front (top) of the list and the least frequently occurring pixel
values at the back (bottom) of the list.

10083] Video encoder 20 may copy one or more entries
from the histogram into the palette. As one example, video
encoder 20 may insert the entry in the histogram with the
greatest frequency into the palette. For instance, video
encoder 20 may insert (j,) into the palette P (i.e., P=PU{
(idx,)}). In some examples, after inserting the entry into
the palette, video encoder 20 may evaluate the entry in the
histogram with the next greatest frequency for insertion into
the palette. For instance, video encoder 20 may set idx
idx+1, j=j+1.

10084] Video encoder 20 may determine whether the entry
with the next greatest frequency (i.e., u11) is within the
neighborhood of any pixel (i.e., x) in the palette (i.e.,
Distance(u11,x)<Thresh). For instance, video encoder 20
may determine whether the entry is within the neighborhood
of any pixel in the palette by determining whether a value of
the entry is within a threshold distance of a value of any
pixel in the palette. In some examples, video encoder 20 may
flexibly select the distance function. As one example, video
encoder 20 may select the distance function as a sum of
absolute differences (SAD) or a sum of squared errors of
prediction (SSE) of the three color components (e.g., each of
luminance, blue hue chrominance, and red hue chromi-
nance), or one color component (e.g., one of luminance, blue
hue chrominance, or red hue chrominance). In some
examples, video encoder 20 may flexibly select the thresh-
old value Thresh. As one example, video encoder 20 may
select the threshold value to be dependent on the quantiza-
tion parameter (QP) of the current block. As another
example, video encoder 20 may select the threshold value to
be dependent on the value of idx or the value of j.

10085] If video encoder 20 determines that the entry with
the next greatest frequency (i.e., u11) is within the neigh-
borhood of any pixel in the palette, video encoder 20 may
not insert the entry in the histogram. If video encoder 20
determines that the entry with the next greatest frequency
(i.e., u11) is not within the neighborhood of any pixel in the
palette, video encoder 20 may insert the entry in the histo-
gram.

10086] Video encoder 20 may continue to insert entries in
the palette until one or more conditions are satisfied. Some
example conditions are when idx=M, when j=M, or when
the size of the palette is larger than a predefined value.

10087] Palette-based coding may have a certain amount of
signaling overhead. For example, a number of bits may be
needed to signal characteristics of a palette, such as a size of
the palette, as well as the palette itself In addition, a number
of bits may be needed to signal index values for the pixels
of the block. The techniques of this disclosure may, in some
examples, reduce the number of bits needed to signal such
information. For example, the techniques described in this
disclosure may include techniques for various combinations
of one or more of signaling palette-based coding modes,

US 2016/0373745 Al

transmitting palettes, predicting palettes, deriving palettes,
and transmitting palette-based coding maps and other syntax
elements.

10088] In some examples, video encoder 20 and/or video
decoder 30 may predict a palette using another palette. For
example, video encoder 20 and/or video decoder 30 may
determine a first palette having first entries indicating first
pixel values. Video encoder 20 and/or video decoder 30 may
then determine, based on the first entries of the first palette,
one or more second entries indicating second pixel values of
a second palette. Video encoder 20 and/or video decoder 30
may also code pixels of a block of video data using the
second palette.

10089] When determining the entries of the second palette
based on the entries in the first palette, video encoder 20 may
encode a variety of syntax elements, which may be used by
video decoder to reconstruct the second palette. For
example, video encoder 20 may encode one or more syntax
elements in a bitstream to indicate that an entire palette (or
palettes, in the case of each color component, e.g., Y, Cb, Cr,
or Y, U, or R, G, B, of the video data having a separate
palette) is copied from one or more neighboring blocks of
the block currently being coded. The palette from which
entries of the current palette of the current block are pre-
dicted (e.g., copied) may be referred to as a predictive
palette. The predictive palette may contain palette entries
from one or more neighboring blocks including spatially
neighboring blocks and/or neighboring blocks in a particular
scan order of the blocks. For example, the neighboring
blocks may be spatially located to the left (left neighboring
block) of or above (upper neighboring block) the block
currently being coded. In another example, video encoder 20
may determine predictive palette entries using the most
frequent sample values in a causal neighbor of the current
block. In another example, the neighboring blocks may
neighbor the block current being coded according to a
particular scan order used to code the blocks. That is, the
neighboring blocks may be one or more blocks coded prior
to the current block in the scan order. Video encoder 20 may
encode one or more syntax elements to indicate the location
of the neighboring blocks from which the palette(s) are
copied.

10090] In some examples, palette prediction may be per-
formed entry-wise. For example, video encoder 20 may
encode one or more syntax elements to indicate, for each
entry of a predictive palette, whether the palette entry is
included in the palette for the current block. If video encoder
20 does not predict an entry of the palette for the current
block, video encoder 20 may encode one or more additional
syntax elements to speciFy the non-predicted entries, as well
as the number of such entries.

10091] The syntax elements described above may be
referred to as a palette prediction vector. For example, as
noted above, video encoder 20 and video decoder 30 may
predict a palette for a current block based on one or more
palettes from neighboring blocks (referred to collectively as
a reference palette). When generating the reference palette,
a first-in first-out (FIFO) may be used by adding the latest
palette into the front of the queue. If the queue exceeds a
predefined threshold, the oldest elements may be popped
out. After pushing new elements into the front of the queue,
a pruning process may be applied to remove duplicated
elements, counting from the beginning of the queue. Spe-
cifically, in some examples, video encoder 20 may encode

Dec. 22, 2016
14

(and video decoder 30 may decode) a 0-1 vector to indicate
whether the pixel values in the reference palette are reused
for the current palette. As an example, as shown in the
example of Table 6, a reference palette may include six items
(e.g., six index values and respective pixel values).

TABLE 6

Index Pixel Value

0

1 vi

2 v2

3 v3

4 v4

5 v5

In an example for purposes of illustration, video encoder 20
may signal a vector (1, 0, 1, 1, 1, 1) that indicates that v0, v2,
v3, v4, and v5 are reused in the current palette, while v1 is not
re-used. In addition to reusing v0, v2, v3, v4, and v5, video
encoder 20 may add two new items to the current palette
with indexes 5 and 6. The current palette for this example is
shown in Table 7, below.

TABLE 7

Pred Flag Index Pixel Value

1 0 v0

0

1 1 V2

1 2 v3

1 3 v4

1 4 v5

5

6

10092] To code the palette prediction 0-1 vector, for each
item in the vector, video encoder 20 may code one bit to
represent its value. Additionally, the number of palette items
which cannot be predicted (e.g., the number of new palette
entries (u0 and ul in the example of Table 7 above)) may be
binarized and signaled.

10093] Other aspects of this disclosure relate to construct-
ing and/or transmitting a map that allows video encoder 20
and/or video decoder 30 to determine pixel values. For
example, other aspects of this disclosure relate to construct-
ing and/or transmitting a map of indices that relate a
particular pixel to an entry of a palette.

10094] In some examples, video encoder 20 may indicate
whether pixels of a block have a corresponding value in a
palette. In an example for purposes of illustration, assume
that an (i, j) entry of a map corresponds to an (i, j) pixel
position in a block of video data. In this example, video
encoder 20 may encode a flag for each pixel position of a
block. Video encoder 20 may set the flag equal to one for the
(i, j) entry to indicate that the pixel value at the (i, j) location
is one of the values in the palette. When a color is included
in the palette (i.e., the flag is equal to one), video encoder 20
may also encode data indicating a palette index for the (i, j)
entry that identifies the color in the palette. When the color
of the pixel is not included in the palette (i.e., the flag is
equal to zero) video encoder 20 may also encode data
indicating a sample value for the pixel, which may be
referred to as an escape pixel. Video decoder 30 may obtain
the above-described data from an encoded bitstream and use

US 2016/0373745 Al

the data to determine a palette index and/or pixel value for
a particular location in a block.

10095] In some instances, there may be a correlation
between the palette index to which a pixel at a given position
is mapped and the probability of a neighboring pixel being
mapped to the same palette index. That is, when a pixel is
mapped to a particular palette index, the probability may be
relatively high that one or more neighboring pixels (in terms
of spatial location) are mapped to the same palette index.

10096] In some examples, video encoder 20 and/or video
decoder 30 may determine and code one or more indices of
a block of video data relative to one or more indices of the
same block of video data. For example, video encoder 20
and/or video decoder 30 may be configured to determine a
first index value associated with a first pixel in a block of
video data, where the first index value relates a value of the
first pixel to an entry of a palette. Video encoder 20 and/or
video decoder 30 may also be confgured to determine,
based on the first index value, one or more second index
values associated with one or more second pixels in the
block of video data, and to code the first and the one or more
second pixels of the block of video data. Thus, in this
example, indices of a map may be coded relative to one or
more other indices of the map.

10097] As discussed above, video encoder 20 and/or video
decoder 30 may use several different techniques to code
index values of a map relative to other indices of the map.
For instance, video encoder 20 and/or video decoder 30 may
use index mode, copy above mode, and transition mode to
code index values of a map relative to other indices of the
map.

10098] In the "index mode" of pallet-based coding, video
encoder 20 and/or video decoder 30 may first signal a palette
index. If the index is equal to the size of the palette, this
indicates that the sample is an escape sample. In this case,
video encoder 20 and/or video decoder 30 may signal the
sample value or quantized samples value for each compo-
nent. For example, if the palette size is 4, for non-escape
samples, the palette indices are in the range [0, 3]. In this
case, an index value of 4 may signiFy an escape sample. If
the index indicates a non-escape sample, video encoder 20
and/or video decoder 30 may signal a run-length, which may
speciFy the number of subsequent samples in scanning order
that share the same index, by a non-negative value n—i
indicating the run length, which means that the following n
pixels including the current one have the same pixel index
as the first signaled index.

10099] In the "copy from above" mode of palette-based
coding, video encoder 20 and/or video decoder 30 may
signal a non-negative run length value m—i to indicate that
for the following m pixels including the current pixel, palette
indexes are the same as their neighbors directly above,
respectively. Note that the copy from above" mode is
different from the "index" mode, in the sense that the palette
indices could be different within the "copy from above" run
mode.

10100] As discussed above, in some examples, it may be
desirable to group bypass bins together (i.e., to increase
CABAC throughput). In accordance with one or more
techniques of this disclosure, video encoder 20 may encode,
and video decoder 30 may decode, syntax elements used to
define a current palette such that syntax elements that are
coded using bypass mode are grouped together. For instance,
as opposed to coding one or more syntax elements related to

Dec. 22, 2016
15

delta quantization parameter (QP) and/or chroma QP offsets
for a current block of video data before a syntax element that
indicates whether a transpose process is applied to palette
indices of a palette for the current block of video data, video
encoder 20 and/or video decoder 30 may code the one or
more syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data after the syntax
element that indicates whether a transpose process is applied
to the palette indices of the palette for the current block of
video data. In this way, video encoder 20 and/or video
decoder 30 may code a larger group of syntax elements
using bypass mode, which may increase CABAC through-
put.

10101] In some examples, the one or more syntax elements
related to delta QP for the current block of video data may
include a syntax elements that specifies the absolute value of
a difference between a luma QP for the current block of
video data and a predictor of the luma QP for the current
block (e.g., cu_qp_delta_palette_abs), and a syntax element
that specifies a sign of the difference between the luma QP
for the current block of video data and the predictor of the
luma QP for the current block (e.g., cu_qp_delta_palette_
sign_flag). In some examples, the one or more syntax
elements related to chroma QP offsets for the current block
of video data may include a syntax element that indicates
whether entries in one or more offset lists are added to the
luma QP for the current block to determine chroma QPs for
the current block (e.g., cu_chroma_qp_palette_offset_flag),
and a syntax element that specifies an index of an entry in
each of the one or more offset lists that are added to the luma
QP for the current block to determine chroma QPs for the
current block (e.g., cu_chroma_qp_palette_offset_idx). As
such, video encoder 20 and/or video decoder 30 may each be
configured to code a palette_transpose_flag syntax element
at a first position in a bitstream and code a cu_qp_delta_
palette_abs syntax element, a cu_qp_delta_palette_sign_flag
syntax element, a cu_chroma_qp_palette_offset_flag syntax
element, and a cu_chroma_qp_palette_offset_idx syntax
element at a second position in the bitstream that is after the
first position.

10102] FIG. 2 is a block diagram illustrating an example
video encoder 20 that may implement the techniques of this
disclosure. FIG. 2 is provided for purposes of explanation
and should not be considered limiting of the techniques as
broadly exemplified and described in this disclosure. For
purposes of explanation, this disclosure describes video
encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other
coding standards or methods.

10103] Video encoder 20 represents an example of a
device that may be configured to perform techniques for
palette-based video coding in accordance with various
examples described in this disclosure. For example, video
encoder 20 may be configured to selectively code various
blocks of video data, such as CU's or PU's in HEVC coding,
using either palette-based coding or non-palette based cod-
ing. Non-palette based coding modes may refer to various
inter-predictive temporal coding modes or intra-predictive
spatial coding modes, such as the various coding modes
specified by the HEVC Standard. Video encoder 20, in one
example, may be configured to generate a palette having
entries indicating pixel values, select pixel values in a palette
to represent pixels values of at least some positions of a
block of video data, and signal information associating at

US 2016/0373745 Al

least some of the positions of the block of video data with
entries in the palette corresponding, respectively, to the
selected pixel values. The signaled information may be used
by video decoder 30 to decode video data.

10104] In the example of FIG. 2, video encoder 20
includes a prediction processing unit 100, a residual gen-
eration unit 102, a transform processing unit 104, a quanti-
zation unit 106, an inverse quantization unit 108, an inverse
transform processing unit 110, a reconstruction unit 112, a
filter unit 114, a decoded picture buffer 116, and an entropy
encoding unit 118. Prediction processing unit 100 includes
an inter-prediction processing unit 120 and an intra-predic-
tion processing unit 126. Inter-prediction processing unit
120 includes a motion estimation unit and a motion com-
pensation unit (not shown). Video encoder 20 also includes
a palette-based encoding unit 122 confgured to perform
various aspects of the palette-based coding techniques
described in this disclosure. In other examples, video
encoder 20 may include more, fewer, or different functional
components.

10105] Video encoder 20 may receive video data. Video
encoder 20 may encode each CT1J in a slice of a picture of
the video data. Each of the CTUs may be associated with
equally-sized luma coding tree blocks (CTBs) and corre-
sponding CTBs of the picture. As part of encoding a CTU,
prediction processing unit 100 may perform quad-tree par-
titioning to divide the CTBs of the CTU into progressively-
smaller blocks. The smaller block may be coding blocks of
CUs. For example, prediction processing unit 100 may
partition a CTB associated with a CTU into four equally-
sized sub-blocks, partition one or more of the sub-blocks
into four equally-sized sub-sub-blocks, and so on.

10106] Video encoder 20 may encode CUs of a CTU to
generate encoded representations of the CUs (i.e., coded
CUs). As part of encoding a CU, prediction processing unit
100 may partition the coding blocks associated with the CU
among one or more PUs of the CU. Thus, each PU may be
associated with a luma prediction block and corresponding
chroma prediction blocks. Video encoder 20 and video
decoder 30 may support PUs having various sizes. As
indicated above, the size of a CU may refer to the size of the
luma coding block of the CU and the size of a PU may refer
to the size of a luma prediction block of the PU. Assuming
that the size of a particular CU is 2Nx2N, video encoder 20
and video decoder 30 may support PU sizes of 2Nx2N or
NxN for intra prediction, and symmetric PU sizes of
2Nx2N, 2NxN, Nx2N, NxN, or similar for inter prediction.
Video encoder 20 and video decoder 30 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD,
nLx2N, and nRx2N for inter prediction.

10107] Inter-prediction processing unit 120 may generate
predictive data for a PU by performing inter prediction on
each PU of a CU. The predictive data for the PU may include
a predictive sample blocks of the PU and motion informa-
tion for the PU. Inter-prediction processing unit 120 may
perform different operations for a PU of a CU depending on
whether the PU is in an I slice, a P slice, or a B slice. In an
I slice, all PUs are intra predicted. Hence, if the PU is in an
I slice, inter-prediction processing unit 120 does not perform
inter prediction on the PU. Thus, for blocks encoded in
I-mode, the predicted block is formed using spatial predic-
tion from previously-encoded neighboring blocks within the
same frame.

Dec. 22, 2016
16

10108] If a PU is in a P slice, the motion estimation unit of
inter-prediction processing unit 120 may search the refer-
ence pictures in a list of reference pictures (e.g., "RefPi-
cListO") for a reference region for the PU. The reference
region for the PU may be a region, within a reference
picture, that contains sample blocks that most closely cor-
responds to the sample blocks of the PU. The motion
estimation unit may generate a reference index that indicates
a position in RefPicListO of the reference picture containing
the reference region for the PU. In addition, the motion
estimation unit may generate an MY that indicates a spatial
displacement between a coding block of the PU and a
reference location associated with the reference region. For
instance, the MV may be a two-dimensional vector that
provides an offset from the coordinates in the current
decoded picture to coordinates in a reference picture. The
motion estimation unit may output the reference index and
the MY as the motion information of the PU. The motion
compensation unit of inter-prediction processing unit 120
may generate the predictive sample blocks of the PU based
on actual or interpolated samples at the reference location
indicated by the motion vector of the PU.

10109] If a PU is in a B slice, the motion estimation unit
may perform uni-prediction or bi-prediction for the PU. To
perform uni-prediction for the PU, the motion estimation
unit may search the reference pictures of RefPicListO or a
second reference picture list ("RefPicListl") for a reference
region for the PU. The motion estimation unit may output,
as the motion information of the PU, a reference index that
indicates a position in RefPicListO or RefPicListl of the
reference picture that contains the reference region, an MY
that indicates a spatial displacement between a sample block
of the PU and a reference location associated with the
reference region, and one or more prediction direction
indicators that indicate whether the reference picture is in
RefPicListO or RefPicListl. The motion compensation unit
of inter-prediction processing unit 120 may generate the
predictive sample blocks of the PU based at least in part on
actual or interpolated samples at the reference region indi-
cated by the motion vector of the PU.

10110] To perform bi-directional inter prediction for a PU,
the motion estimation unit may search the reference pictures
in RefPicListO for a reference region for the PU and may
also search the reference pictures in RefPicListl for another
reference region for the PU. The motion estimation unit may
generate reference picture indexes that indicate positions in
RefPicListO and RefPicListl of the reference pictures that
contain the reference regions. In addition, the motion esti-
mation unit may generate MYs that indicate spatial displace-
ments between the reference location associated with the
reference regions and a sample block of the PU. The motion
information of the PU may include the reference indexes and
the MVs of the PU. The motion compensation unit may
generate the predictive sample blocks of the PU based at
least in part on actual or interpolated samples at the refer-
ence region indicated by the motion vector of the PU.

10111] In accordance with various examples of this dis-
closure, video encoder 20 may be confgured to perform
palette-based coding. With respect to the HEVC framework,
as an example, the palette-based coding techniques may be
configured to be used as a coding unit (CU) mode. In other
examples, the palette-based coding techniques may be con-
figured to be used as a PU mode in the framework of HEVC.
Accordingly, all of the disclosed processes described herein

US 2016/0373745 Al

(throughout this disclosure) in the context of a CU mode
may, additionally or alternatively, apply to PU. However,
these HEVC-based examples should not be considered a
restriction or limitation of the palette-based coding tech-
niques described herein, as such techniques may be applied
to work independently or as part of other existing or yet to
be developed systems/standards. In these cases, the unit for
palette coding can be square blocks, rectangular blocks, or
even regions of non-rectangular shape.

10112] Palette-based encoding unit 122, for example, may
perform palette-based encoding when a palette-based encod-
ing mode is selected, e.g., for a CU or PU. For example,
palette-based encoding unit 122 may be configured to gen-
erate a palette having entries indicating pixel values, select
pixel values in a palette to represent pixels values of at least
some positions of a block of video data, and signal infor-
mation associating at least some of the positions of the block
of video data with entries in the palette corresponding,
respectively, to the selected pixel values. Although various
functions are described as being performed by palette-based
encoding unit 122, some or all of such functions may be
performed by other processing units, or a combination of
different processing units.

10113] Palette-based encoding unit 122 may generate syn-
tax elements to define a palette for a block of video data.
Some example syntax elements which palette-based encod-
ing unit 122 may generate to define a current palette for a
current block of video data include, but are not limited to, a
syntax element that indicates whether a transpose process is
applied to palette indices of the current palette (e.g., palette_
transpose_flag), one or more syntax elements related to delta
quantization parameter (QP) (e.g., cu_qp_delta_palette_abs,
cu_qp_delta_palette_sign_flag, cu_chroma_qp_palette_off-
set_flag, and/or cu_chroma_qp_palette_offset_idx), one or
more syntax elements related to chroma QP offsets for the
current block of video data, one or more syntax elements
that indicate a number of zeros that precede a non-zero entry
in an array that indicates whether entries from a predictor
palette are reused in the current palette (e.g., palette_pre-
dictor_run), one or more syntax elements that indicate a
number of entries in the current palette that are explicitly
signalled (e.g., num_signalled_palette_entries), one or more
syntax elements that indicate a value of a component in a
palette entry in the current palette (e.g., palette_entry), one
or more syntax elements that indicate whether the current
block of video data includes at least one escape coded
sample (e.g., palette_escape_val_present_flag), one or more
syntax elements that indicate a number of entries in the
current palette that are explicitly signalled or inferred (e.g.,
num_palette_indices_idc), and one or more syntax elements
that indicate indices in an array of current palette entries
(e.g., palette_index_idc). Palette-based encoding unit 122
may output the generated syntax elements that define the
current palette for the current block to one or more other
components of video encoder 20, such as entropy encoding
unit 118.

10114] Accordingly, video encoder 20 may be confgured
to encode blocks of video data using palette-based code
modes as described in this disclosure. Video encoder 20 may
selectively encode a block of video data using a palette
coding mode, or encode a block of video data using a
different mode, e.g., such an HEVC inter-predictive or
intra-predictive coding mode. The block of video data may
be, for example, a CU or PU generated according to an

Dec. 22, 2016
17

HEVC coding process. A video encoder 20 may encode
some blocks with inter-predictive temporal prediction or
intra-predictive spatial coding modes and decode other
blocks with the palette-based coding mode.

10115] Intra-prediction processing unit 126 may generate
predictive data for a PU by performing intra prediction on
the PU. The predictive data for the PU may include predic-
tive sample blocks for the PU and various syntax elements.
Intra-prediction processing unit 126 may perform intra pre-
diction on PUs in I slices, P slices, and B slices.

10116] To perform intra prediction on a PU, intra-predic-
tion processing unit 126 may use multiple intra prediction
modes to generate multiple sets of predictive data for the
PU. To use an intra-prediction mode to generate a set of
predictive data for the PU, intra-prediction processing unit
126 may extend samples from sample blocks of neighboring
PUs across the sample blocks of the PU in a direction
associated with the intra prediction mode. The neighboring
PUs may be above, above and to the right, above and to the
left, or to the left of the PU, assuming a left-to-right,
top-to-bottom encoding order for PUs, CUs, and CTUs.
Intra-prediction processing unit 126 may use various num-
bers of intra prediction modes, e.g., 33 directional intra
prediction modes. In some examples, the number of intra
prediction modes may depend on the size of the region
associated with the PU.

10117] Prediction processing unit 100 may select the pre-
dictive data for PUs of a CU from among the predictive data
generated by inter-prediction processing unit 120 for the
PUs or the predictive data generated by intra-prediction
processing unit 126 for the PUs. In some examples, predic-
tion processing unit 100 selects the predictive data for the
PUs of the CU based on rate/distortion metrics of the sets of
predictive data. The predictive sample blocks of the selected
predictive data may be referred to herein as the selected
predictive sample blocks.

10118] Residual generation unit 102 may generate, based
on the luma, Cb and Cr coding block of a CU and the
selected predictive luma, Cb and Cr blocks of the PUs of the
CU, a luma, Cb and Cr residual blocks of the CU. For
instance, residual generation unit 102 may generate the
residual blocks of the CU such that each sample in the
residual blocks has a value equal to a difference between a
sample in a coding block of the CU and a corresponding
sample in a corresponding selected predictive sample block
of a PU of the CU.

10119] Transform processing unit 104 may perform quad-
tree partitioning to partition the residual blocks associated
with a CU into transform blocks associated with TUs of the
CU. Thus, a TU may be associated with a luma transform
block and two chroma transform blocks. The sizes and
positions of the luma and chroma transform blocks of TUs
of a CU may or may not be based on the sizes and positions
of prediction blocks of the PUs of the CU. A quad-tree
structure known as a "residual quad-tree" (RQT) may
include nodes associated with each of the regions. The TUs
of a CU may correspond to leaf nodes of the RQT.

10120] Transform processing unit 104 may generate trans-
form coefficient blocks for each T1J of a CU by applying one
or more transforms to the transform blocks of the TU.
Transform processing unit 104 may apply various trans-
forms to a transform block associated with a TU. For
example, transform processing unit 104 may apply a discrete
cosine transform (DCT), a directional transform, or a con-

US 2016/0373745 Al

ceptually similar transform to a transform block. In some
examples, transform processing unit 104 does not apply
transforms to a transform block. In such examples, the
transform block may be treated as a transform coefficient
block.

10121] Quantization unit 106 may quantize the transform
coefficients in a coefficient block. The quantization process
may reduce the bit depth associated with some or all of the
transform coefficients. For example, an n-bit transform
coefficient may be rounded down to an m-bit transform
coefficient during quantization, where n is greater than m.
Quantization unit 106 may quantize a coefficient block
associated with a TU of a CU based on a quantization
parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the
coefficient blocks associated with a CU by adjusting the QP
value associated with the CU. Quantization may introduce
loss of information, thus quantized transform coefficients
may have lower precision than the original ones.

10122] Inverse quantization unit 108 and inverse trans-
form processing unit 110 may apply inverse quantization
and inverse transforms to a coefficient block, respectively, to
reconstruct a residual block from the coefficient block.
Reconstruction unit 112 may add the reconstructed residual
block to corresponding samples from one or more predictive
sample blocks generated by prediction processing unit 100
to produce a reconstructed transform block associated with
a TU. By reconstructing transform blocks for each TU of a
CU in this way, video encoder 20 may reconstruct the coding
blocks of the CU.

10123] Filter unit 114 may perform one or more deblock-
ing operations to reduce blocking artifacts in the coding
blocks associated with a CU. Decoded picture buffer 116
may store the reconstructed coding blocks after filter unit
114 performs the one or more deblocking operations on the
reconstructed coding blocks. Inter-prediction processing
unit 120 may use a reference picture that contains the
reconstructed coding blocks to perform inter prediction on
PUs of other pictures. In addition, intra-prediction process-
ing unit 126 may use reconstructed coding blocks in
decoded picture buffer 116 to perform intra prediction on
other PUs in the same picture as the CU.

10124] Entropy encoding unit 118 may receive data from
other functional components of video encoder 20. For
example, entropy encoding unit 118 may receive coefficient
blocks from quantization unit 106 and may receive syntax
elements from prediction processing unit 100. Entropy
encoding unit 118 may perform one or more entropy encod-
ing operations on the data to generate entropy-encoded data.
For example, entropy encoding unit 118 may perform a
context-adaptive variable length coding (CAVLC) opera-
tion, a CABAC operation, a variable-to-variable (V2V)
length coding operation, a syntax-based context-adaptive
binary arithmetic coding (SBAC) operation, a Probability
Interval Partitioning Entropy (PIPE) coding operation, an
Exponential-Golomb encoding operation, or another type of
entropy encoding operation on the data. Video encoder 20
may output a bitstream that includes entropy-encoded data
generated by entropy encoding unit 118. For instance, the
bitstream may include data that represents a RQT for a CU.

10125] As discussed above, palette-based encoding unit
122 may output the generated syntax elements that define
the current palette for the current block to entropy encoding
unit 118. Entropy encoding unit 118 may encode one or

Dec. 22, 2016

LEI

more bins of the syntax elements received from palette-
based encoding unit 122 using CABAC with contexts and
one or more bins of the syntax elements received from
palette-based encoding unit 122 using CABAC without
contexts (i.e., bypass mode). In some examples, entropy
encoding unit 118 may encode the bins of the syntax
elements using contexts or bypass mode as defined above in
Table 2.

10126] As discussed above, it may be desirable to group
bypass coded bins together to increase CABAC throughput.
In SCC Draft 3, the bins of the palette_predictor_run,
num_signalled_palette_entries, palette_entry, and palette_
escape_val_present_flag syntax elements are bypass coded
and are grouped together. However, while the bins of the
num_palette_indices_idc, and palette_index_idc syntax ele-
ments are also bypass coded, they are not grouped with the
bins of the palette_predictor_run, num_signalled_palette_
entries, palette_entry, and palette_escape_val_present_flag
syntax elements. Instead, in HEVC SCC Draft 3, the num_
palette_indices_idc, and palette_index_idc syntax elements
are separated from the palette_predictor_run, num_sig-
nalled_palette_entries, palette_entry, and palette_escape_
val_present_flag syntax elements by one or more syntax
elements related to delta quantization parameter (QP) and/or
chroma QP offsets for a current block of video data (i.e.,
cu_qp_delta_palette_abs, cu_qp_delta_palette_sign_flag,
cu_chroma_qp_palette_offset_flag, and cu_chroma_qp_pal-
ette_offset_idx) and a syntax element that indicates whether
a transpose process is applied to the palette indices of the
palette for the current block of video data (i.e., palette_
transpose_flag).

10127] In accordance with one or more techniques of this
disclosure, entropy encoding unit 118 may encode the syn-
tax elements used to define a current palette such that syntax
elements that are encoded using bypass mode are consecu-
tively encoded. For instance, as opposed to separating the
bins of the palette_predictor_run, num_signalled_palette_
entries, palette_entry, and palette_escape_val_present_flag
syntax elements and the bins of the num_palette_indices_
idc, and palette_index_idc syntax elements, entropy encod-
ing unit 118 may encode one or more syntax elements
related to delta QP and/or chroma QP offsets for the current
block of video data after a syntax element that indicates
whether a transpose process is applied to the palette indices
of the palette for the current block of video data such that the
bins of the palette_predictor_run, num_signalled_palette_
entries, palette_entry, and palette_escape_val_present_flag,
num_palette_indices_idc, and palette_index_idc syntax ele-
ments are grouped together. In this way, the CABAC
throughput of entropy encoding unit 118 may be increased.

10128] FIG. 3 is a block diagram illustrating an example
video decoder 30 that is configured to implement the tech-
niques of this disclosure. FIG. 3 is provided for purposes of
explanation and is not limiting on the techniques as broadly
exemplified and described in this disclosure. For purposes of
explanation, this disclosure describes video decoder 30 in
the context of HEVC coding. However, the techniques of
this disclosure may be applicable to other coding standards
or methods.

10129] Video decoder 30 represents an example of a
device that may be configured to perform techniques for
palette-based video coding in accordance with various
examples described in this disclosure. For example, video
decoder 30 may be confgured to selectively decode various

US 2016/0373745 Al

blocks of video data, such as CU's or PU's in HEVC coding,
using either palette-based coding or non-palette based cod-
ing. Non-palette based coding modes may refer to various
inter-predictive temporal coding modes or intra-predictive
spatial coding modes, such as the various coding modes
specified by the HEVC Standard. Video decoder 30, in one
example, may be configured to generate a palette having
entries indicating pixel values, receive information associ-
ating at least some positions of a block of video data with
entries in the palette, select pixel values in the palette based
on the information, and reconstruct pixel values of the block
based on the selected pixel values.

10130] In the example of FIG. 3, video decoder 30
includes an entropy decoding unit 150, a prediction process-
ing unit 152, an inverse quantization unit 154, an inverse
transform processing unit 156, a reconstruction unit 158, a
filter unit 160, and a decoded picture buffer 162. Prediction
processing unit 152 includes a motion compensation unit
164 and an intra-prediction processing unit 166. Video
decoder 30 also includes a palette-based decoding unit 165
configured to perform various aspects of the palette-based
coding techniques described in this disclosure. In other
examples, video decoder 30 may include more, fewer, or
different functional components.

10131] In some examples, video decoder 30 may further
include video data memory 149. Video data memory 149
may store video data, such as an encoded video bitstream, to
be decoded by the components of video decoder 30. The
video data stored in video data memory 149 may be
obtained, for example, from channel 16, e.g., from a local
video source, such as a camera, via wired or wireless
network communication of video data, or by accessing
physical data storage media. Video data memory 149 may
form a coded picture buffer (CPB) that stores encoded video
data from an encoded video bitstream. The CPB may be a
reference picture memory that stores reference video data
for use in decoding video data by video decoder 30, e.g., in
intra- or inter-coding modes. Video data memory 149 may
be formed by any of a variety of memory devices, such as
dynamic random access memory (DRAM), including syn-
chronous DRAM (SDRAM), magnetoresistive RAM
(MRAM), resistive RAM (RRAM), or other types of
memory devices. Video data memory 149 and decoded
picture buffer 162 may be provided by the same memory
device or separate memory devices. In various examples,
video data memory 149 may be on-chip with other compo-
nents of video decoder 30, or off-chip relative to those
components.

10132] A coded picture buffer (CPB) may receive and
store encoded video data (e.g., NAL units) of a bitstream.
Entropy decoding unit 150 may receive encoded video data
(e.g., NAL units) from the CPB and parse the NAL units to
decode syntax elements. Entropy decoding unit 150 may
entropy decode entropy-encoded syntax elements in the
NAL units. Prediction processing unit 152, inverse quanti-
zation unit 154, inverse transform processing unit 156,
reconstruction unit 158, and filter unit 160 may generate
decoded video data based on the syntax elements extracted
from the bitstream.

10133] The NAL units of the bitstream may include coded
slice NAL units. As part of decoding the bitstream, entropy
decoding unit 150 may extract and entropy decode syntax
elements from the coded slice NAL units. Each of the coded
slices may include a slice header and slice data. The slice

Dec. 22, 2016
19

header may contain syntax elements pertaining to a slice.
The syntax elements in the slice header may include a syntax
element that identifies a PPS associated with a picture that
contains the slice.

10134] In addition to decoding syntax elements from the
bitstream, video decoder 30 may perform a reconstruction
operation on a non-partitioned CU. To perform the recon-
struction operation on a non-partitioned CU, video decoder
30 may perform a reconstruction operation on each TU of
the CU. By performing the reconstruction operation for each
TU of the CU, video decoder 30 may reconstruct residual
blocks of the CU.

10135] As part of performing a reconstruction operation on
a TU of a CU, inverse quantization unit 154 may inverse
quantize, i.e., dc-quantize, coefficient blocks associated with
the TIJ. Inverse quantization unit 154 may use a QP value
associated with the CU of the TU to determine a degree of
quantization and, likewise, a degree of inverse quantization
for inverse quantization unit 154 to apply. That is, the
compression ratio, i.e., the ratio of the number of bits used
to represent an original sequence and the compressed
sequence, may be controlled by adjusting the value of the
QP used when quantizing transform coefficients. The com-
pression ratio may also depend on the method of entropy
coding employed.

10136] After inverse quantization unit 154 inverse quan-
tizes a coefficient block, inverse transform processing unit
156 may apply one or more inverse transforms to the
coefficient block in order to generate a residual block
associated with the TU. For example, inverse transform
processing unit 156 may apply an inverse DCT, an inverse
integer transform, an inverse Karhunen-Loeve transform
(KLT), an inverse rotational transform, an inverse direc-
tional transform, or another inverse transform to the coef-
ficient block.

10137] If a PU is encoded using intra prediction, intra-
prediction processing unit 166 may perform intra prediction
to generate predictive blocks for the PU. Intra-prediction
processing unit 166 may use an intra prediction mode to
generate the predictive luma, Cb and Cr blocks for the PU
based on the prediction blocks of spatially-neighboring PUs.
Intra-prediction processing unit 166 may determine the intra
prediction mode for the PU based on one or more syntax
elements decoded from the bitstream.

10138] Prediction processing unit 152 may construct a first
reference picture list (RefPicListO) and a second reference
picture list (RefPicListl) based on syntax elements extracted
from the bitstream. Furthermore, if a PU is encoded using
inter prediction, entropy decoding unit 150 may extract
motion information for the PU. Motion compensation unit
164 may determine, based on the motion information of the
PU, one or more reference regions for the PU. Motion
compensation unit 164 may generate, based on samples
blocks at the one or more reference blocks for the PU,
predictive luma, Cb and Cr blocks for the PU.

10139] Reconstruction unit 158 may use the luma, Cb and
Cr transform blocks associated with TUs of a CU and the
predictive luma, Cb and Cr blocks of the PUs of the CU, i.e.,
either intra-prediction data or inter-prediction data, as appli-
cable, to reconstruct the luma, Cb and Cr coding blocks of
the CU. For example, reconstruction unit 158 may add
samples of the luma, Cb and Cr transform blocks to corre-
sponding samples of the predictive luma, Cb and Cr blocks
to reconstruct the luma, Cb and Cr coding blocks of the CU.

US 2016/0373745 Al

10140] Filter unit 160 may perform a deblocking operation
to reduce blocking artifacts associated with the luma, Cb and
Cr coding blocks of the CU. Video decoder 30 may store the
luma, Cb and Cr coding blocks of the CU in decoded picture
buffer 162. Decoded picture buffer 162 may provide refer-
ence pictures for subsequent motion compensation, intra
prediction, and presentation on a display device, such as
display device 32 of FIG. 1. For instance, video decoder 30
may perform, based on the luma, Cb and Cr blocks in
decoded picture buffer 162, intra prediction or inter predic-
tion operations on PUs of other CUs. In this way, video
decoder 30 may extract, from the bitstream, transform
coefficient levels of the significant luma coefficient block,
inverse quantize the transform coefficient levels, apply a
transform to the transform coefficient levels to generate a
transform block, generate, based at least in part on the
transform block, a coding block, and output the coding block
for display.

10141] In accordance with various examples of this dis-
closure, video decoder 30 may be configured to perform
palette-based coding. Palette-based decoding unit 165, for
example, may perform palette-based decoding when a pal-
ette-based decoding mode is selected, e.g., for a CU or PU.
For example, palette-based decoding unit 165 may be con-
figure to generate a palette having entries indicating pixel
values, receive information associating at least some posi-
tions of a block of video data with entries in the palette,
select pixel values in the palette based on the information,
and reconstruct pixel values of the block based on the
selected pixel values. Although various functions are
described as being performed by palette-based decoding unit
165, some or all of such functions may be performed by
other processing units, or a combination of different pro-
cessing units.

10142] Palette-based decoding unit 165 may receive pal-
ette coding mode information, and perform the above opera-
tions when the palette coding mode information indicates
that the palette coding mode applies to the block. When the
palette coding mode information indicates that the palette
coding mode does not apply to the block, or when other
mode information indicates the use of a different mode,
prediction processing unit 152 decodes the block of video
data using a non-palette based coding mode, e.g., such an
HEVC inter-predictive mode using motion compensation
unit 164 or intra-predictive coding mode using intra-predic-
tion processing unit 166, when the palette coding mode
information indicates that the palette coding mode does not
apply to the block. The block of video data may be, for
example, a CU or PU generated according to an HEVC
coding process. Video decoder 30 may decode some blocks
with inter-predictive temporal prediction or intra-predictive
spatial coding modes and decode other blocks with the
palette-based coding mode. The palette-based coding mode
may comprise one of a plurality of different palette-based
coding modes, or there may be a single palette-based coding
mode.

10143] The palette coding mode information received by
palette-based decoding unit 165 may comprise a palette
mode syntax element, such as a flag. A first value of the
palette mode syntax element indicates that the palette coding
mode applies to the block and a second value of the palette
mode syntax element indicates that the palette coding mode
does not apply to the block of video data. Palette-based
decoding unit 165 may receive the palette coding mode

Dec. 22, 2016
20

information at one or more of a predictive unit level, a
coding unit level, a slice level, or a picture level, or may
receive the palette coding mode information in at least one
of picture parameter set (PPS), sequence parameter set (SPS)
or video parameter set (VPS).

10144] In some examples, palette-based decoding unit 165
may infer the palette coding mode information based on one
or more of a size of the coding block, a frame type, a color
space, a color component, a frame size, a frame rate, a layer
id in scalable video coding or a view id in multi-view coding
associated with the block of video data.

10145] Palette-based decoding unit 165 also may be con-
figured to receive information defining at least some of the
entries in the palette with video data, and generate the palette
based at least in part on the received information. The size
of the palette may be fixed or variable. In some cases, the
size of the palette is variable and is adjustable based on
information signaled with the video data. The signaled
information may speciFy whether an entry in the palette is a
last entry in the palette. Also, in some cases, the palette may
have a maximum size.

10146] The palette may be a single palette including
entries indicating pixel values for a luma component and
chroma components of the block. In this case, each entry in
the palette is a triple entry indicating pixel values for the
luma component and two chroma components. Alterna-
tively, the palette comprises a luma palette including entries
indicating pixel values of a luma component of the block,
and chroma palettes including entries indicating pixel values
for respective chroma components of the block.

10147] In some examples, palette-based decoding unit 165
may generate the palette by predicting the entries in the
palette based on previously processed data. The previously
processed data may include palettes, or information from
palettes, for previously decoded neighboring blocks. Palette-
based decoding unit 165 may receive a prediction syntax
element indicating whether the entries in the palette are to be
predicted. The prediction syntax element may include a
plurality of prediction syntax elements indicating, respec-
tively, whether entries in palettes for luma and chroma
components are to be predicted.

10148] Palette-based decoding unit 165 may, in some
examples, predict at least some of the entries in the palette
based on entries in a palette for a left neighbor block or a top
neighbor block in a slice or picture. In this case, the entries
in the palette that are predicted based on entries in either a
palette for the left neighbor block or the top neighbor block
may be predicted by palette-based decoding unit 165 based
on a syntax element that indicates selection of the left
neighbor block or the top neighbor block for prediction. The
syntax element may be a flag having a value that indicates
selection of the left neighbor block or the top neighbor block
for prediction.

10149] In some examples, palette-based decoding unit 165
may receive one or more prediction syntax elements that
indicate whether at least some selected entries in the palette,
on an entry-by-entry basis, are to be predicted, and generate
the entries accordingly. Palette-based decoding unit 165 may
predict some of the entries and receive information directly
speciFying other entries in the palette.

10150] Information, received by palette-based decoding
unit 165, associating at least some positions of a block of
video data with entries in the palette, may comprise map
information including palette index values for at least some

US 2016/0373745 Al

of the positions in the block, wherein each of the palette
index values corresponds to one of the entries in the palette.
The map information may include one or more run syntax
elements that each indicate a number of consecutive posi-
tions in the block having the same palette index value.

10151] In some examples, palette-based decoding unit 165
may receive information indicating line copying whereby
palette entries for a line of positions in the block are copied
from palette entries for another line of positions in the block.
Palette-based decoding unit 165 may use this information to
perform line copying to determine entries in the palette for
various positions of a block. The line of positions may
comprise a row, a portion of a row, a column or a portion of
a column of positions of the block.

10152] Palette-based decoding unit 165 may generate the
palette in part by receiving pixel values for one or more
positions of the block, and adding the pixel values to entries
in the palette to dynamically generate at least a portion the
palette on-the-fly. Adding the pixel values may comprise
adding the pixel values to an initial palette comprising an
initial set of entries, or to an empty palette that does not
include an initial set of entries. In some examples, adding
comprises adding the pixel values to add new entries to an
initial palette comprising an initial set of entries or fill
existing entries in the initial palette, or replacing or changing
pixel values of entries in the initial palette.

10153] In some examples, the palette may be a quantized
palette in which a pixel value selected from the palette for
one of the positions in the block is different from an actual
pixel value of the position in the block, such that the
decoding process is lossy. For example, the same pixel value
may be selected from the palette for two different positions
having different actual pixel values.

10154] As discussed above, palette-based decoding unit
165 may receive information that defines a palette for a
current block of video data. For instance, palette-based
decoding unit 165 may receive a plurality of syntax elements
from entropy decoding unit 150. In some examples, entropy
decoding unit 150 may decode the plurality of syntax
elements from a coded video bitstream according to a syntax
table. As one example, entropy decoding unit 150 may
decode the plurality of syntax elements from a coded video
bitstream in accordance with the palette syntax table of
HEVC SCC Draft 3, which is reproduced above in Table 1.
However, as discussed above, the arrangement of syntax
elements in HEVC SCC Draft 3 may not be optimal. In
particular, the arrangement of syntax elements in HEVC
SCC Draft 3 does not maximize the number of bypass mode
coded syntax elements that are grouped together, which may
decrease CABAC throughput.

10155] In accordance with one or more techniques of this
disclosure, entropy decoding unit 150 may decode the
syntax elements used to define a current palette such that
additional bypass mode coded syntax elements are grouped
together. For instance, as opposed to separating the bins of
the palette_predictor_run, num_signalled_palette_entries,
palette_entry, and palette_escape_val_present_flag syntax
elements and the bins of the num_palette_indices_idc, and
palette_index_idc syntax elements, entropy decoding unit
150 may decode one or more syntax elements related to delta
QP and/or chroma QP offsets for the current block of video
data after a syntax element that indicates whether a trans-
pose process is applied to the palette indices of the palette
for the current block of video data such that the bins of the

Dec. 22, 2016
21

palette_predictor_run, num_signalled_palette_entries, pal-
ette_entry, and palette_escape_val_present_flag, num_pal-
ette_indices_idc, and palette_index_idc syntax elements are
grouped together. As one example, entropy decoding unit
150 may decode the syntax elements used to define the
current palette in the order shown above in Table 4. As
another example, entropy decoding unit 150 may decode the
syntax elements used to define the current palette in the
order shown above in Table 5. In this way, the CABAC
throughput of entropy decoding unit 150 may be increased.

10156] FIG. 4 is a conceptual diagram illustrating an
example of determining a palette for coding video data,
consistent with techniques of this disclosure. The example of
FIG. 4 includes a picture 178 having a first coding unit (CU)
180 that is associated with first palettes 184 and a second CU
188 that is associated with second palettes 192. As described
in greater detail below and in accordance with the tech-
niques of this disclosure, second palettes 192 are based on
first palettes 184. Picture 178 also includes block 196 coded
with an intra-prediction coding mode and block 200 that is
coded with an inter-prediction coding mode.

10157] The techniques of FIG. 4 are described in the
context of video encoder 20 (FIG. 1 and FIG. 2) and video
decoder 30 (FIG. 1 and FIG. 3) and with respect to the
HEVC Standard for purposes of explanation. However, it
should be understood that the techniques of this disclosure
are not limited in this way, and may be applied by other
video coding processors and/or devices in other video cod-
ing processes and/or standards.

10158] In general, a palette refers to a number of pixel
values that are dominant and/or representative for a CU
currently being coded, such as CU 188 in the example of
FIG. 4. First palettes 184 and second palettes 192 are shown
as including multiple palettes. In some examples, a video
coder (such as video encoder 20 or video decoder 30) may
code palettes separately for each color component of a CU.
For example, video encoder 20 may encode a palette for a
luma (Y) component of a CU, another palette for a chroma
(U) component of the CU, and yet another palette for the
chroma (V) component of the CU. In this example, entries
of theY palette may represent Y values of pixels of the CU,
entries of the U palette may represent U values of pixels of
the CU, and entries of the V palette may represent V values
of pixels of the CU. In another example, video encoder 20
may encode a palette for a luma (Y) component of a CU, and
another palette for two components (U, V) of the CU. In this
example, entries of the Y palette may represent Y values of
pixels of the CU, and entries of the U-V palette may
represent U-V value pairs of pixels of the CU.

10159] In other examples, video encoder 20 may encode a
single palette for all color components of a CU. In this
example, video encoder 20 may encode a palette having an
i-th entry that is a triple value, including Yi, Ui, and Vi. In
this case, the palette includes values for each of the com-
ponents of the pixels. Accordingly, the representation of
palettes 184 and 192 as a set of palettes having multiple
individual palettes is merely one example and not intended
to be limiting.

10160] In the example of FIG. 4, first palettes 184 includes
three entries 202-206 having entry index value 1, entry index
value 2, and entry index value 3, respectively. Entries
202-206 relate the index values to pixel values including
pixel value A, pixel value B, and pixel value C, respectively.
As described herein, rather than coding the actual pixel

US 2016/0373745 Al

values of first CU 180, a video coder (such as video encoder
20 or video decoder 30) may use palette-based coding to
code the pixels of the block using the indices 1-3. That is, for
each pixel position of first CU 180, video encoder 20 may
encode an index value for the pixel, where the index value
is associated with a pixel value in one or more of first
palettes 184. Video decoder 30 may obtain the index values
from a bitstream and reconstruct the pixel values using the
index values and one or more of first palettes 184. Thus, first
palettes 184 are transmitted by video encoder 20 in an
encoded video data bitstream for use by video decoder 30 in
palette-based decoding. In general, one or more palettes may
be transmitted for each CU or may be shared among
different CUs.

10161] Video encoder 20 and video decoder 30 may deter-
mine second palettes 192 based on first palettes 184. For
example, video encoder 20 may encode a pred_palette_flag
for each CU (including, as an example, second CU 188) to
indicate whether the palette for the CU is predicted from one
or more palettes associated with one or more other CUs,
such as neighboring CUs (spatially or based on scan order)
or the most frequent samples of a causal neighbor. For
example, when the value of such a flag is equal to one, video
decoder 30 may determine that second palettes 192 for
second CU 188 are predicted from one or more already
decoded palettes and therefore no new palettes for second
CU 188 are included in a bitstream containing the pred_
palette_flag. When such a flag is equal to zero, video
decoder 30 may determine that palette 192 for second CU
188 is included in the bitstream as a new palette. In some
examples, pred_palette_flag may be separately coded for
each different color component of a CU (e.g., three flags, one
for Y, one for U, and one for for a CU in YUV video). In
other examples, a single pred_palette_flag may be coded for
all color components of a CU.

10162] In the example above, the pred_palette_flag is
signaled per-CU to indicate whether any of the entries of the
palette for the current block are predicted. In some
examples, one or more syntax elements may be signaled on
a per-entry basis. That is, a flag may be signaled for each
entry of a palette predictor to indicate whether that entry is
present in the current palette. As noted above, if a palette
entry is not predicted, the palette entry may be explicitly
signaled.

10163] When determining second palettes 192 relative to
first palettes 184 (e.g., pred_palette_flag is equal to one),
video encoder 20 and/or video decoder 30 may locate one or
more blocks from which the predictive palettes, in this
example first palettes 184, are determined. The predictive
palettes may be associated with one or more neighboring
CUs of the CU currently being coded (e.g., such as neigh-
boring CUs (spatially or based on scan order) or the most
frequent samples of a causal neighbor), i.e., second CU 188.
The palettes of the one or more neighboring CUs may be
associated with a predictor palette. In some examples, such
as the example illustrated in FIG. 4, video encoder 20 and/or
video decoder 30 may locate a left neighboring CU, first CU
180, when determining a predictive palette for second CU
188. In other examples, video encoder 20 and/or video
decoder 30 may locate one or more CUs in other positions
relative to second CU 188, such as an upper CU, CU 196.

10164] Video encoder 20 and/or video decoder 30 may
determine a CU for palette prediction based on a hierarchy.
For example, video encoder 20 and/or video decoder 30 may

Dec. 22, 2016
22

initially identify the left neighboring CU, first CU 180, for
palette prediction. If the left neighboring CU is not available
for prediction (e.g., the left neighboring CU is coded with a
mode other than a palette-based coding mode, such as an
intra-prediction more or intra-prediction mode, or is located
at the left-most edge of a picture or slice) video encoder 20
and/or video decoder 30 may identify the upper neighboring
CU, CU 196. Video encoder 20 and/or video decoder 30 may
continue searching for an available CU according to a
predetermined order of locations until locating a CU having
a palette available for palette prediction. In some examples,
video encoder 20 and/or video decoder 30 may determine a
predictive palette based on multiple blocks and/or recon-
structed samples of a neighboring block.

10165] While the example of FIG. 4 illustrates first pal-
ettes 184 as predictive palettes from a single CU, first CU
180, in other examples, video encoder 20 and/or video
decoder 30 may locate palettes for prediction from a com-
bination of neighboring CUs. For example, video encoder 20
and/or video decoder may apply one or more formulas,
functions, rules or the like to generate a palette based on
palettes of one or a combination of a plurality of neighboring
CUs.

10166] In still other examples, video encoder 20 and/or
video decoder 30 may construct a candidate list including a
number of potential candidates for palette prediction. A
pruning process may be applied at both video encoder 20
and video decoder 30 to remove duplicated candidates in the
list. In such examples, video encoder 20 may encode an
index to the candidate list to indicate the candidate CU in the
list from which the current CU used for palette prediction is
selected (e.g., copies the palette). Video decoder 30 may
construct the candidate list in the same manner, decode the
index, and use the decoded index to select the palette of the
corresponding CU for use with the current CU.

10167] In an example for purposes of illustration, video
encoder 20 and video decoder 30 may construct a candidate
list that includes one CU that is positioned above the CU
currently being coded and one CU that is positioned to the
left of the CU currently being coded. In this example, video
encoder 20 may encode one or more syntax elements to
indicate the candidate selection. For example, video encoder
20 may encode a flag having a value of zero to indicate that
the palette for the current CU is copied from the CU
positioned to the left of the current CU. Video encoder 20
may encode the flag having a value of one to indicate that the
palette for the current CU is copied from the CU positioned
above the current CU. Video decoder 30 decodes the flag and
selects the appropriate CU for palette prediction.

10168] In still other examples, video encoder 20 and/or
video decoder 30 determine the palette for the CU currently
being coded based on the frequency with which sample
values included in one or more other palettes occur in one or
more neighboring CUs. For example, video encoder 20
and/or video decoder 30 may track the colors associated
with the most frequently used index values during coding of
a predetermined number of CUs. Video encoder 20 and/or
video decoder 30 may include the most frequently used
colors in the palette for the CU currently being coded.

10169] In some examples, video encoder 20 and/or video
decoder 30 may perform entry-wise based palette prediction.
For example, video encoder 20 may encode one or more
syntax elements, such as one or more flags, for each entry of
a predictive palette indicating whether the respective pre-

US 2016/0373745 Al

dictive palette entries are reused in the current palette (e.g.,
whether pixel values in a palette of another CU are reused
by the current palette). In this example, video encoder 20
may encode a flag having a value equal to one for a given
entry when the entry is a predicted value from a predictive
palette (e.g., a corresponding entry of a palette associated
with a neighboring CU). Video encoder 20 may encode a
flag having a value equal to zero for a particular entry to
indicate that the particular entry is not predicted from a
palette of another CU. In this example, video encoder 20
may also encode additional data indicating the value of the
non-predicted palette entry.

10170] In the example of FIG. 4, second palettes 192
includes four entries 208-214 having entry index value 1,
entry index value 2, entry index value 3, and entry index 4,
respectively. Entries 208-214 relate the index values to pixel
values including pixel value A, pixel value B, pixel value C,
and pixel value D, respectively. Video encoder 20 and/or
video decoder 30 may use any of the above-described
techniques to locate first CU 180 for purposes of palette
prediction and copy entries 1-3 of first palettes 184 to entries
1-3 of second palettes 192 for coding second CU 188. In this
way, video encoder 20 and/or video decoder 30 may deter-
mine second palettes 192 based on first palettes 184. In
addition, video encoder 20 and/or video decoder 30 may
code data for entry 4 to be included with second palettes 192.
Such information may include the number of palette entries
not predicted from a predictor palette and the pixel values
corresponding to those palette entries.

10171] In some examples, according to aspects of this
disclosure, one or more syntax elements may indicate
whether palettes, such as second palettes 192, are predicted
entirely from a predictive palette (shown in FIG. 4 as first
palettes 184, but which may be composed of entries from
one or more blocks) or whether particular entries of second
palettes 192 are predicted. For example, an initial syntax
element may indicate whether all of the entries are predicted.
If the initial syntax element indicates that not all of the
entries are predicted (e.g., a flag having a value of 0), one or
more additional syntax elements may indicate which entries
of second palettes 192 are predicted from the predictive
palette.

10172] According to some aspects of this disclosure, cer-
tain information associated with palette prediction may be
inferred from one or more characteristics of the data being
coded. That is, rather than video encoder 20 encoding syntax
elements (and video decoder 30 decoding such syntax
elements), video encoder 20 and video decoder 30 may
perform palette prediction based on one or more character-
istics of the data being coded.

10173] FIG. 5 is a conceptual diagram illustrating an
example of determining indices to a palette for a block of
pixels, consistent with techniques of this disclosure. For
example, FIG. S includes a map 240 of index values (values
1, 2, and 3) that relate respective positions of pixels asso-
ciated with the index values to an entry of palettes 244.
Palettes 244 may be determined in a similar manner as first
palettes 184 and second palettes 192 described above with
respect to FIG. 4.

10174] Again, the techniques of FIG. S are described in the
context of video encoder 20 (FIG. 1 and FIG. 2) and video
decoder 30 (FIG. 1 and FIG. 3) and with respect to the
HEVC video coding standard for purposes of explanation.
However, it should be understood that the techniques of this

Dec. 22, 2016
23

disclosure are not limited in this way, and may be applied by
other video coding processors and/or devices in other video
coding processes and/or standards.

10175] While map 240 is illustrated in the example of FIG.
S as including an index value for each pixel position, it
should be understood that in other examples, not all pixel
positions may be associated with an index value relating the
pixel value to an entry of palettes 244. That is, as noted
above, in some examples, video encoder 20 may encode
(and video decoder 30 may obtain, from an encoded bit-
stream) an indication of an actual pixel value (or its quan-
tized version) for a position in map 240 if the pixel value is
not included in palettes 244.

10176] In some examples, video encoder 20 and video
decoder 30 may be configured to code an additional map
indicating which pixel positions are associated with index
values. For example, assume that the (i, j) entry in the map
corresponds to the (i, j) position of a CU. Video encoder 20
may encode one or more syntax elements for each entry of
the map (i.e., each pixel position) indicating whether the
entry has an associated index value. For example, video
encoder 20 may encode a flag having a value of one to
indicate that the pixel value at the (i, j) location in the CU
is one of the values in palettes 244. Video encoder 20 may,
in such an example, also encode a palette index (shown in
the example of FIG. S as values 1-3) to indicate that pixel
value in the palette and to allow video decoder to reconstruct
the pixel value. In instances in which palettes 244 include a
single entry and associated pixel value, video encoder 20
may skip the signaling of the index value. Video encoder 20
may encode the flag to have a value of zero to indicate that
the pixel value at the (i, j) location in the CU is not one of
the values in palettes 244. In this example, video encoder 20
may also encode an indication of the pixel value for use by
video decoder 30 in reconstructing the pixel value. In some
instances, the pixel value may be coded in a lossy manner.

10177] The value of a pixel in one position of a CU may
provide an indication of values of one or more other pixels
in other positions of the CU. For example, there may be a
relatively high probability that neighboring pixel positions
of a CU will have the same pixel value or may be mapped
to the same index value (in the case of lossy coding, in which
more than one pixel value may be mapped to a single index
value).

10178] Accordingly, video encoder 20 may encode one or
more syntax elements indicating a number of consecutive
pixels or index values in a given scan order that have the
same pixel value or index value. As noted above, the string
of like-valued pixel or index values may be referred to
herein as a run. In an example for purposes of illustration, if
two consecutive pixels or indices in a given scan order have
different values, the run is equal to zero. If two consecutive
pixels or indices in a given scan order have the same value
but the third pixel or index in the scan order has a different
value, the run is equal to one. For three consecutive indices
or pixels with the same value, the run is two, and so forth.
Video decoder 30 may obtain the syntax elements indicating
a run from an encoded bitstream and use the data to
determine the number of consecutive locations that have the
same pixel or index value.

10179] The number of indices that may be included in a
run may be impacted by the scan order. For example,
consider a raster scan of lines 266, 268, and 270 of map 240.
Assuming a horizontal, left to right scan direction (such as

US 2016/0373745 Al

a raster scanning order), row 266 includes three index values
of "1," two index values of "2," and three index values of
"3." Row 268 includes five index values of "1" and three
index values of "3." In this example, for row 266, video
encoder 20 may encode syntax elements indicating that the
first value of row 266 (the leftmost value of the row) is 1
with a run of 2, followed by an index value of 2 with a run
of 1, followed by an index value of 3 with a run of 2.
Following the raster scan, video encoder 20 may then begin
coding row 268 with the leftmost value. For example, video
encoder 20 may encode syntax elements indicating that the
first value of row 268 is 1 with a run of 4, followed by an
index value of 3 with a run of 2. Video encoder 20 may
proceed in the same manner with line 270.

10180] Hence, in the raster scan order, the first index of a
current line may be scanned directly after the last index of
a previous line. However, in some examples, it may not be
desirable to scan the indices in a raster scan order. For
instance, it may not be desirable to scan the indices in a
raster scan order where a first line of a block of video data
(e.g., row 266) includes a first pixel adjacent to a first edge
of the block of video data (e.g., the left most pixel of row
266, which has an index value of 1) and a last pixel adjacent
to a second edge of the block of video data (e.g., the right
most pixel of row 266, which has an index value of 3), a
second line of the block of video data (e.g., row 268)
includes a first pixel adjacent to the first edge of the block
of video data (e.g., the left most pixel of row 268, which has
an index value of 1) and a last pixel adjacent to the second
edge of the block of video data (e.g., the right most pixel of
row 268, which has an index value of 3), the last pixel of the
first line is adjacent to the last pixel of the second line, and
the first edge and the second edge are parallel, and the last
pixel in the first line has the same index value as the last
pixel in the second line, but has a different index value from
the first pixel in the second line. This situation (i.e., where
the index value of last pixel in the first line is the same as the
last pixel in the second line, but different from the first pixel
in the second line) may occur more frequently in computer
generated screen content than other types of video content.

10181] In some examples, video encoder 20 may utilize a
snake scan order when encoding the indices of the map. For
instance, video encoder 20 may scan the last pixel of the
second line directly after the last pixel of the first line. In this
way, video encoder 20 may improve the efficiency of
run-length coding.

10182] For example, as opposed to using a raster scan
order, video encoder 20 may use a snake scan order to code
the values of map 240. In an example for purposes of
illustration, consider rows 266, 268, and 270 of map 240.
Using a snake scan order (such as a snake scanning order),
video encoder 20 may code the values of map 240 beginning
with the left position of row 266, proceeding through to the
right most position of row 266, moving down to the left most
position of row 268, proceeding through to the left most
position of row 268, and moving down to the left most
position of row 270. For instance, video encoder 20 may
encode one or more syntax elements indicating that the first
position of row 266 is one and that the next run of two
consecutive entries in the scan direction are the same as the
first position of row 266.

10183] Video encoder 20 may encode one or more syntax
elements indicating that the next position of row 266 (i.e.,
the fourth position, from left to right) is two and that the next

Dec. 22, 2016
24

consecutive entry in the scan direction are the same as the
fourth position of row 266. Video encoder 20 may encode
one or more syntax elements indicating that the next position
of row 266 (i.e., the sixth position) is three and that the next
run of five consecutive entries in the scan direction are the
same as the sixth position of row 266. Video encoder 20 may
encode one or more syntax elements indicating that the next
position in the scan direction (i.e., the fourth position of row
268, from right to left) of row 268 is one and that the next
run of nine consecutive entries in the scan direction are the
same as the fourth position of row 268.

10184] In this way, by using a snake scan order, video
encoder 20 may encode longer length runs, which may
improve coding efficiency. For example, using the raster
scan, the final run of row 266 (for the index value 3) is equal
to 2. Using the snake scan, however, the final run of row 266
extends into row 268 and is equal to 5.

10185] Video decoder 30 may receive the syntax elements
described above andreconstruct rows 266, 268, and 270. For
example, video decoder 30 may obtain, from an encoded
bitstream, data indicating an index value for a position of
map 240 currently being coded. Video decoder 30 may also
obtain data indicating the number of consecutive positions in
the scan order having the same index value.

10186] FIG. 6 is a flowchart illustrating an example pro-
cess for decoding a block of video data using palette mode,
in accordance with one or more techniques of this disclo-
sure. The techniques of FIG. 6 may be performed by a video
decoder, such as video decoder 30 illustrated in FIG. 1 and
FIG. 3. For purposes of illustration, the techniques of FIG.
6 are described within the context of video decoder 30 of
FIG. 1 and FIG. 3, although video decoders having confgu-
rations different than that of video decoder 30 may perform
the techniques of FIG. 6.

10187] As discussed above, it may be desirable to maxi-
mize the number of bypass mode coded bins of syntax
elements that are grouped together. In accordance with one
or more techniques of this disclosure, video decoder 30 may
decode, from a coded video bitstream and using bypass
mode, a group of syntax elements for a palette for a current
block of video data (602). For instance, entropy decoding
unit 150 of video decoder 30 may decode, using bypass
mode, bins of one or more syntax elements that indicate a
number of zeros that precede a non-zero entry in an array
that indicates whether entries from a predictor palette are
reused in the current palette (e.g., one or more palette_
predictor_run syntax elements), a syntax element that indi-
cates a number of entries in the current palette that are
explicitly signalled (e.g., a num_signalled_palette_entries
syntax element), one or more syntax elements that each
indicate a value of a component in an entry in the current
palette (e.g., one or more palette_entry syntax elements), a
syntax element that indicates whether the current block of
video data includes at least one escape coded sample (e.g.,
a palette_escape_val_present_flag syntax element), a syntax
element that indicates a number of entries in the current
palette that are explicitly signalled or inferred (e.g., a
num_palette_indices_idc syntax element), and one or more
syntax elements that indicate indices in an array of current
palette entries (e.g., one or more palette_index_idc syntax
elements). In some examples, to decode a group of bypass-
coded syntax elements, video decoder 30 may sequentially
decode syntax elements included in the group of syntax
elements without decoding any non-bypass coded bins. As

US 2016/0373745 Al

discussed above, grouping together a large number of bypass
coded bins/syntax elements may improve a CABAC
throughput of video decoder 30. In particular, the grouping
of bypass-coded syntax elements may enable video decoder
30 to avoid starting/stopping/restarting the CABAC engine.
By contrast, when the bypass-coded syntax elements are not
grouped, video decoder 30 may have to continually start the
CABAC engine to decode a non-bypass-coded bin with a
first context, stop the CABAC engine to decode a bypass-
coded bin, start the CABAC engine to decode another
non-bypass-coded bin with the first context, etc. As dis-
cussed above, the repeated toggling of the CABAC engine
may decrease the CABAC engine's throughput.

10188] Video decoder 30 may decode, using CABAC with
a context and at a position in the coded video bitstream that
is after the group of syntax elements, a syntax element that
indicates whether a transpose process is applied to palette
indices of the palette for the current block of video data
(604). For instance, entropy decoding unit 150 of video
decoder 30 may decode, using CABAC with a context, the
bin of a palette_transpose_flag syntax element.

10189] Video decoder 30 may decode, using CABAC with
a context and at a position in the coded video bitstream that
is after the syntax element that indicates whether a transpose
process is applied to palette indices of the palette for the
current block of video data, one or more syntax elements
related to delta quantization parameter (QP) and/or chroma
QP offsets for the current block of video data (606). For
instance, entropy decoding unit 150 of video decoder 30
may decode, using CABAC with one or more contexts, bins
of a syntax elements that specifies the absolute value of a
difference between a QP (e.g., a luma QP) for the current
block of video data and a predictor of the QP for the current
block (e.g., cu_qp_delta_abs), a syntax element that speci-
fies a sign of the difference between the QP for the current
block of video data and the predictor of the QP for the
current block (e.g., cu_qp_delta_sign_flag), a syntax ele-
ment that indicates whether entries in one or more offset lists
are added to a luma QP for the current block to determine
chroma QPs for the current block (e.g., cu_chroma_qp_
offset_flag), and a syntax element that specifies an index of
an entry in each of the one or more offset lists that are added
to the luma QP for the current block to determine chroma
QPs for the current block (e.g., cu_chroma_qp_offset_idx).

10190] In some examples, video decoder 30 may decode
the one or more syntax elements related to delta QP and/or
chroma QP offsets for the current block of video data based
on a value of a syntax element of the group of syntax
elements decoded using bypass mode. As one example,
video decoder 30 may decode the one or more syntax
elements related to delta QP and/or chroma QP offsets for
the current block of video data where the syntax element of
the group of syntax elements that indicates whether the
current block of video data includes at least one escape
coded sample indicates that the current block of video data
does include at least one escape sample. As another
example, video decoder 30 may not decode the one or more
syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data where the syntax
element of the group of syntax elements that indicates
whether the current block of video data includes at least one
escape coded sample indicates that the current block of
video data does not include at least one escape sample.

Dec. 22, 2016
25

10191] Video decoder 30 may generate the palette for the
current block of video data based on the group of syntax
elements and the syntax element that indicates whether a
transpose process is applied to palette indices of the palette
for the current block of video data (608) and decode the
current block of video data based on the generated palette
and the one or more syntax elements related to delta QP
and/or chroma QP offsets for the current block of video data
(610). For instance, palette-based decoding unit 165 may
generate the palette having entries indicating pixel values,
receive information associating at least some positions of the
current block of video data with entries in the palette, select
pixel values in the palette based on the information, and
reconstruct pixel values of the block based on the selected
pixel values.

10192] FIG. 7 is a flowchart illustrating an example pro-
cess for encoding a block of video data using palette mode,
in accordance with one or more techniques of this disclo-
sure. The techniques of FIG. 7 may be performed by a video
encoder, such as video encoder 20 illustrated in FIG. 1 and
FIG. 2. For purposes of illustration, the techniques of FIG.
7 are described within the context of video encoder 20 of
FIG. 1 and FIG. 2, although video encoders having confgu-
rations different than that of video encoder 20 may perform
the techniques of FIG. 7.

10193] As discussed above, it may be desirable to maxi-
mize the number of bypass mode coded bins of syntax
elements that are grouped together. In accordance with one
or more techniques of this disclosure, video encoder 20 may
encode, in a coded video bitstream and using bypass mode,
a group of syntax elements for a palette for a current block
of video data (702). For instance, entropy encoding unit 118
of video encoder 20 may encode, using bypass mode, bins
of one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that indicates
whether entries from a predictor palette are reused in the
current palette (e.g., one or more palette_predictor_run
syntax elements), a syntax element that indicates a number
of entries in the current palette that are explicitly signalled
(e.g., a num_signalled_palette_entries syntax element), one
or more syntax elements that each indicate a value of a
component in an entry in the current palette (e.g., one or
more palette_entry syntax elements), a syntax element that
indicates whether the current block of video data includes at
least one escape coded sample (e.g., a palette_escape_val_
present_flag syntax element), a syntax element that indicates
a number of entries in the current palette that are explicitly
signalled or inferred (e.g., a num_palette_indices_idc or a
num_palette_indices_minus 1 syntax element), and one or
more syntax elements that indicate indices in an array of
current palette entries (e.g., one or more palette_index_idc
syntax elements).

10194] Video encoder 20 may encode, using CABAC with
a context and at a position in the coded video bitstream that
is after the group of syntax elements, a syntax element that
indicates whether a transpose process is applied to palette
indices of the palette for the current block of video data
(704). For instance, entropy encoding unit 118 of video
encoder 20 may encode, using CABAC with a context, the
bin of a palette_transpose_flag syntax element.

10195] Video encoder 20 may encode, using CABAC with
a context and at a position in the coded video bitstream that
is after the syntax element that indicates whether a transpose
process is applied to palette indices of the palette for the

US 2016/0373745 Al

current block of video data, one or more syntax elements
related to delta quantization parameter (QP) and/or chroma
QP offsets for the current block of video data (706). For
instance, entropy encoding unit 118 of video encoder 20 may
encode, using CABAC with one or more contexts, bins of a
syntax elements that specifies the absolute value of a dif-
ference between a luma QP for the current block of video
data and a predictor of the luma QP for the current block
(e.g., cu_qp_delta_abs), a syntax element that specifies a
sign of the difference between the luma QP for the current
block of video data and the predictor of the luma QP for the
current block (e.g., cu_qp_delta_sign_flag), a syntax ele-
ment that indicates whether entries in one or more offset lists
are added to the luma QP for the current block to determine
chroma QPs for the current block (e.g., cu_chroma_qp_
offset_flag), and a syntax element that specifies an index of
an entry in each of the one or more offset lists that are added
to the luma QP for the current block to determine chroma
QPs for the current block (e.g., cu_chroma_qp_offset_idx).

10196] In some examples, video encoder 20 may encode
the one or more syntax elements related to delta QP and/or
chroma QP offsets for the current block of video data based
on a value of a syntax element of the group of syntax
elements encoded using bypass mode. As one example,
video encoder 20 may encode the one or more syntax
elements related to delta QP and/or chroma QP offsets for
the current block of video data where the syntax element of
the group of syntax elements that indicates whether the
current block of video data includes at least one escape
coded sample indicates that the current block of video data
does include at least one escape sample. As another
example, video encoder 20 may not encode the one or more
syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data where the syntax
element of the group of syntax elements that indicates
whether the current block of video data includes at least one
escape coded sample indicates that the current block of
video data does not include at least one escape sample.

10197] It is to be recognized that depending on the
example, certain acts or events of any of the techniques
described herein can be performed in a different sequence,
may be added, merged, or left out altogether (e.g., not all
described acts or events are necessary for the practice of the
techniques). Moreover, in certain examples, acts or events
may be performed concurrently, e.g., through multi-threaded
processing, interrupt processing, or multiple processors,
rather than sequentially. In addition, while certain aspects of
this disclosure are described as being performed by a single
module or unit for purposes of clarity, it should be under-
stood that the techniques of this disclosure may be per-
formed by a combination of units or modules associated
with a video coder.

10198] Certain aspects of this disclosure have been
described with respect to the developing HEVC standard for
purposes of illustration. However, the techniques described
in this disclosure may be useful for other video coding
processes, including other standard or proprietary video
coding processes not yet developed.

10199] The techniques described above may be performed
by video encoder 20 (FIGS. 1 and 2) and/or video decoder
30 (FIGS. 1 and 3), both of which may be generally referred
to as a video coder. Likewise, video coding may refer to
video encoding or video decoding, as applicable.

Dec. 22, 2016
26

10200] While particular combinations of various aspects
of the techniques are described above, these combinations
are provided merely to illustrate examples of the techniques
described in this disclosure. Accordingly, the techniques of
this disclosure should not be limited to these example
combinations and may encompass any conceivable combi-
nation of the various aspects of the techniques described in
this disclosure.

10201] In one or more examples, the functions described
may be implemented in hardware, software, firmware, or
any combination thereof If implemented in software, the
functions may be stored on or transmitted over, as one or
more instructions or code, a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techniques described in this disclosure. A computer
program product may include a computer-readable medium.

10202] By way of example, and not limitation, such com-
puter-readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transient media, but are
instead directed to non-transient, tangible storage media.
Disk and disc, as used herein, includes compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc, where disks usually reproduce data
magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

10203] Instructions may be executed by one or more
processors, such as one or more digital signal processors
(DSPs), general purpose microprocessors, application spe-
cific integrated circuits (ASICs), field programmable logic
arrays (FPGAs), or other equivalent integrated or discrete
logic circuitry. Accordingly, the term "processor," as used
herein may refer to any of the foregoing structure or any
other structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding

US 2016/0373745 Al

and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.
10204] The techniques of this disclosure may be imple-
mented in a wide variety of devices or apparatuses, includ-
ing a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units
are described in this disclosure to emphasize functional
aspects of devices configured to perform the disclosed
techniques, but do not necessarily require realization by
different hardware units. Rather, as described above, various
units may be combined in a codec hardware unit or provided
by a collection of interoperative hardware units, including
one or more processors as described above, in conjunction
with suitable software and/or firmware.
10205] Various examples have been described. These and
other examples are within the scope of the following claims.

What is claimed is:
1. A method of decoding video data, the method com-

prising:
decoding, from a coded video bitstream, a syntax element

that indicates whether a transpose process is applied to
palette indices of a palette for a current block of video
data;

decoding, from the coded video bitstream and at a posi-
tion in the coded video bitstream that is after the syntax
element that indicates whether the transpose process is
applied to palette indices of the palette for the current
block of video data, one or more syntax elements
related to delta quantization parameter (QP) and/or
chroma QP offsets for the current block of video data;
and

decoding the current block of video data based on the
palette for the current block of video data and the one
or more syntax elements related to delta QP and/or
chroma QP offsets for the current block of video data.

2. The method of claim 1, wherein:
decoding the syntax element that indicates whether the

transpose process is applied to palette indices of the
current block of video data comprises decoding the
syntax element that indicates whether the transpose
process is applied to palette indices of the current block
of video data using context adaptive binary arithmetic
coding (CABAC) with a context, and

decoding the one or more syntax elements related to delta
QP and/or chroma QP offsets comprises decoding the
one or more syntax elements related to delta QP and/or
chroma QP offsets using CABAC with a context.

3. The method of claim 1 wherein the syntax element that
indicates whether the transpose process is applied to palette
indices of the current block of video data comprises a
palette_transpose_flag syntax element.
4. The method of claim 1, wherein the one or more syntax

elements related to delta QP comprise one or both of a
syntax element that indicates an absolute value of a differ-
ence between a QP of the current block and a predictor of the
QP of the current block and a syntax element that indicates
a sign of the difference between the QP of the current block
and the predictor of the QP of the current block.
5. The method of claim 1, wherein the one or more syntax

elements related to chroma QP offsets comprise one or both
of a syntax element that indicates whether entries in one or
more offset lists are added to a luma QP of the current block
to determine chroma QPs for the current block and a syntax

Dec. 22, 2016
27

element that indicates an index of an entry in each of the one
or more offset lists that are added to the luma QP for the
current block to determine the chroma QPs for the current
block.
6. The method of claim 1, further comprising:
decoding, from the coded video bitstream, a group of

syntax elements using Bypass mode, wherein the group
comprises one or more of:
one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused in the current palette,

a syntax element that indicates a number of entries in
the current palette that are explicitly signalled,

one or more syntax elements that each indicate a value
of a component in an entry in the current palette,

a syntax element that indicates whether the current
block of video data includes at least one escape
coded sample,

a syntax element that indicates a number of indices in
the current palette that are explicitly signalled or
inferred, and

one or more syntax elements that indicate indices in an
array of current palette entries.

7. The method of claim 6, wherein one or more of:

the one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused in the current palette comprise one or more
palette_predictor_run syntax elements,

the syntax element that indicates a number of entries in
the current palette that are explicitly signalled com-
prises a num_signalled_palette_entries syntax element,

the one or more syntax elements that each indicate a value
of a component in an entry in the current palette
comprise one or more palette_entry syntax elements,

the syntax element that indicates whether the current
block of video data includes at least one escape coded
sample comprises palette_escape_val_present_flag,

the syntax element that indicates a number of indices in
the current palette that are explicitly signalled or
inferred comprise a num_palette_indices_idc syntax
element, and

the one or more syntax elements that indicate indices in an
array of current palette entries comprise one or more
palette_index_idc syntax elements.

8. The method of claim 6, wherein decoding the group of
syntax elements comprises decoding the group of syntax
elements from the coded video bitstream at a position in the
coded video bitstream that is before the syntax element that
indicates whether the transpose process is applied to palette
indices of the current block of video data.

9. The method of claim 6, further comprising:
decoding, from the coded video bitstream after the group
of syntax elements coded using Bypass mode, a syntax
element that indicates a last occurrence of a run type
flag within the current block of video data.

10. The method of claim 9, wherein decoding the syntax
element that indicates the last occurrence of a run type flag
within the current block of video data comprises decoding
the syntax element that indicates the last occurrence of a run
type flag within the current block of video data using context
adaptive binary arithmetic coding (CABAC) with a context.

US 2016/0373745 Al

11. A method of encoding video data, the method com-
prising:

encoding, in a coded video bitstream, a syntax element
that indicates whether a transpose process is applied to
palette indices of a palette for a current block of video
data;

encoding, in the coded video bitstream and at a position
in the coded video bitstream that is after the syntax
element that indicates whether the transpose process is
applied to palette indices of the palette for the current
block of video data, one or more syntax elements
related to delta quantization parameter (QP) and/or
chroma QP offsets for the current block of video data;
and

encoding the current block of video data based on the
palette for the current block of video data and the one
or more syntax elements related to delta QP and/or
chroma QP offsets for the current block of video data.

12. The method of claim 11, wherein:
encoding the syntax element that indicates whether the

transpose process is applied to palette indices of the
current block of video data comprises encoding the
syntax element that indicates whether the transpose
process is applied to palette indices of the current block
of video data using context adaptive binary arithmetic
coding (CABAC) with a context, and

encoding the one or more syntax elements related to delta
QP and/or chroma QP offsets comprises encoding the
one or more syntax elements related to delta QP and/or
chroma QP offsets using CABAC with a context.

13. The method of claim 11 wherein the syntax element
that indicates whether the transpose process is applied to
palette indices of the current block of video data comprises
a palette_transpose_flag syntax element.
14. The method of claim 11, wherein the one or more

syntax elements related to delta QP comprise one or both of
a syntax element that indicates an absolute value of a
difference between a QP of the current block and a predictor
of the QP of the current block and a syntax element that
indicates a sign of the difference between the QP of the
current block and the predictor of the QP of the current
block.

15. The method of claim 11, wherein the one or more
syntax elements related to chroma QP offsets comprise one
or both of a syntax element that indicates whether entries in
one or more offset lists are added to a luma QP of the current
block to determine chroma QPs for the current block and a
syntax element that indicates an index of an entry in each of
the one or more offset lists that are added to the luma QP for
the current block to determine the chroma QPs for the
current block.
16. The method of claim 11, further comprising:

encoding, in the coded video bitstream, a group of syntax
elements using Bypass mode, wherein the group com-
prises one or more of:

one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused in the current palette,

a syntax element that indicates a number of entries in
the current palette that are explicitly signalled,

one or more syntax elements that each indicate a value
of a component in an entry in the current palette,

Dec. 22, 2016

a syntax element that indicates whether the current
block of video data includes at least one escape
coded sample,

a syntax element that indicates a number of indices in
the current palette that are explicitly signalled or
inferred, and

one or more syntax elements that indicate indices in an
array of current palette entries.

17. The method of claim 16, wherein one or more of:
the one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused in the current palette comprise one or more
palette_predictor_run syntax elements,

the syntax element that indicates a number of entries in
the current palette that are explicitly signalled com-
prises a num_signalled_palette_entries syntax element,

the one or more syntax elements that each indicate a value
of a component in an entry in the current palette
comprise one or more palette_entry syntax elements,

the syntax element that indicates whether the current
block of video data includes at least one escape coded
sample comprises palette_escape_val_present_flag,

the syntax element that indicates a number of indices in
the current palette that are explicitly signalled or
inferred comprise a num_palette_indices_minus 1 syn-
tax element, and

the one or more syntax elements that indicate indices in an
array of current palette entries comprise one or more
palette_index_idc syntax elements.

18. The method of claim 16, wherein encoding the group
of syntax elements comprises encoding the group of syntax
elements in the coded video bitstream at a position in the
coded video bitstream that is before the syntax element that
indicates whether the transpose process is applied to palette
indices of the current block of video data.

19. The method of claim 16, further comprising:
encoding, in the coded video bitstream after the group of

syntax elements coded using Bypass mode, a syntax
element that indicates a last occurrence of a run type
flag within the current block of video data.

20. The method of claim 19, wherein encoding the syntax
element that indicates the last occurrence of a run type flag
within the current block of video data comprises encoding
the syntax element that indicates the last occurrence of a run
type flag within the current block of video data using context
adaptive binary arithmetic coding (CABAC) with a context.
21. A device for encoding or decoding video data, the

device comprising:

a memory configured to store video data;

one or more processors confgured to:
encode or decode, in a coded video bitstream, a syntax
element that indicates whether a transpose process is
applied to palette indices of a palette for a current block
of video data;

encode or decode, in the coded video bitstream and at a
position in the coded video bitstream that is after the
syntax element that indicates whether the transpose
process is applied to palette indices of the palette for the
current block of video data, one or more syntax ele-
ments related to delta quantization parameter (QP)
and/or chroma QP offsets for the current block of video
data; and

US 2016/0373745 Al

encode or decode the current block of video data based on
the palette for the current block of video data and the
one or more syntax elements related to delta QP and/or
chroma QP offsets for the current block of video data.

22. The device of claim 21, wherein:

to encode or decode the syntax element that indicates
whether the transpose process is applied to palette
indices of the current block of video data, the one or
more processors are configured to encode or decode the
syntax element that indicates whether the transpose
process is applied to palette indices of the current block
of video data using context adaptive binary arithmetic
coding (CABAC) with a context, and

to encode or decode the one or more syntax elements
related to delta QP and/or chroma QP offsets the one or
more processors are configured to encode or decode the
one or more syntax elements related to delta QP and/or
chroma QP offsets using CABAC with a context.

23. The device of claim 21 wherein the syntax element
that indicates whether the transpose process is applied to
palette indices of the current block of video data comprises
a palette_transpose_flag syntax element.

24. The device of claim 21, where in the one or more
processors are further configured to:

encode or decode, in the coded video bitstream, a group
of syntax elements using Bypass mode, wherein the
group comprises one or more of:

one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused in the current palette,

a syntax element that indicates a number of entries in
the current palette that are explicitly signalled,

one or more syntax elements that each indicate a value
of a component in an entry in the current palette,

a syntax element that indicates whether the current
block of video data includes at least one escape
coded sample,

a syntax element that indicates a number of indices in
the current palette that are explicitly signalled or
inferred, and

one or more syntax elements that indicate indices in an
array of current palette entries.

25. The device of claim 24, wherein one or more of:

the one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused in the current palette comprise one or more
palette_predictor_run syntax elements,

the syntax element that indicates a number of entries in
the current palette that are explicitly signalled com-
prises a num_signalled_palette_entries syntax element,

the one or more syntax elements that each indicate a value
of a component in an entry in the current palette
comprise one or more palette_entry syntax elements,

the syntax element that indicates whether the current
block of video data includes at least one escape coded
sample comprises palette_escape_val_present_flag,

Dec. 22, 2016
29

the syntax element that indicates a number of entries in
the current palette that are explicitly signalled or
inferred comprise a num_palette_indices_minus 1 syn-
tax element, and

the one or more syntax elements that indicate indices in an
array of current palette entries comprise one or more
palette_index_idc syntax elements.

26. The device of claim 24, wherein, to encode or decode
the group of syntax elements, the one or more processors are
configured to encode or decode the group of syntax elements
in the coded video bitstream at a position in the coded video
bitstream that is before the syntax element that indicates
whether the transpose process is applied to palette indices of
the current block of video data.
27. The device of claim 24, wherein the one or more

processors are further configured to:
encode or decode, in the coded video bitstream after the
group of syntax elements coded using Bypass mode, a
syntax element that indicates a last occurrence of a run
type flag within the current block of video data.

28. The device of claim 27, wherein, to encode or decode
the syntax element that indicates the last occurrence of a run
type flag within the current block of video data, the one or
more processors are configured to encode or decode the
syntax element that indicates the last occurrence of a run
type flag within the current block of video data using context
adaptive binary arithmetic coding (CABAC) with a context.
29. A device for decoding video data, the device com-

prising:
means for decoding, from a coded video bitstream, a

syntax element that indicates whether a transpose pro-
cess is applied to palette indices of a palette for a
current block of video data;

means for decoding, from the coded video bitstream and
at a position in the coded video bitstream that is after
the syntax element that indicates whether the transpose
process is applied to palette indices of the palette for the
current block of video data, one or more syntax ele-
ments related to delta quantization parameter (QP)
and/or chroma QP offsets for the current block of video
data; and

means for decoding the current block of video data based
on the palette for the current block of video data and the
one or more syntax elements related to delta QP and/or
chroma QP offsets for the current block of video data.

30. A computer-readable storage medium storing at least
a portion of a coded video bitstream that, when processed by
a video decoding device, cause one or more processors of
the video decoding device to:
determine whether a transpose process is applied to
palette indices of a palette for a current block of video
data; and

decode the current block of the video data based on the
palette for the current block of video data and a delta
quantization parameter (QP) and one or more chroma
QP offsets for the current block of video data,

wherein one or more syntax elements related to the delta
QP and one or more syntax elements related to the one
or more chroma QP offsets for the current block of
video data are located at a position in the coded video
bitstream that is after a syntax element that indicates
whether the transpose process is applied to palette
indices of the palette for the current block of video data.

* * * * *

	Bibliography
	Drawings
	Description
	Claims

